화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.46, 1-8, February, 2017
Estimation of thermodynamic properties of hydrogen isotopes and modeling of hydrogen isotope systems using Aspen Plus simulator
E-mail:
Physical properties of hydrogen isotopes, hydrogen (H2), hydrogen-deuterium (HD), hydrogen-tritium (HT), deuterium (D2), deuterium-tritium (DT), and tritium (T2) were estimated through vapor pressure prediction, and validated by steady-state simulation of ITER isotope separation system (ISS). Peng-Robinson (PR) equation of state with Twu alpha function was selected for modelling which showed favorable prediction from the experimental vapor pressures of each hydrogen isotopes. The steady-state simulation of ITER ISS using Aspen Plus consists of four distillation columns and seven equilibrium reactors with four purified products: D2, T2, HD, and DT. Converged solution from simulation produced potential scenario for actual ITER ISS process.
  1. Glugla M, ITER IDM Document (ITER_D_2X6K67), Plant Description (PD), Fuel Cycle and Radiological Monitoring, 2009 (Chapter 10).
  2. Babineau D, Maruyama S, Pearce R, Glugla M, Bo L, Rogers B, Willms S, Piazza G, Yamanishi T, Yun SH, Worth L, Shu W, Proceedings of the 23rd IAEA Fusion Energy Conference, Daejeon, Republic of Korea, 2010.
  3. Glugla M, Babineau D, Bo L, Maruyama S, Pearce R, Piazza G, Rogers B, Willms S, Yamanishi T, Yun SH, Proceedings of the 9th International Conference on Tritium Science and Technology, Tritium 2010, Nara, Japan, 2010.
  4. Maruyama S, Yang Y, Pitts RA, Sugihara M, Putvinski S, Carpentier-Chouchana S, Li B, Li W, Baylor LR, Meitner SJ, Day C, LaBombard B, Reinke M, Proceedings of the 23rd IAEA Fusion Energy Conference, Daejeon, Republic of Korea, 2010.
  5. Konishi S, Glugla M, Hayashi T, Fusion Eng. Des., 83, 954 (2008)
  6. Glugla M, Antipenkov A, Beloglazov S, Caldwell-Nichols C, Cristescu IR, Cristescu I, Day C, Doerr L, Girard JP, Tada E, Fusion Eng. Des., 82, 472 (2007)
  7. Yoshida H, Kveton O, Koonce J, Holland D, Haange R, Fusion Eng. Des., 39-40(875) (1998)
  8. Song KM, Sohn SH, Kim KS, Proceedings of the Korean Nuclear Society Autumn Meeting, 1997, p. 343.
  9. Ahn DH, Paek SW, Kim KR, Jeong HS, Choi HJ, Kim JK, Kang HS, Lee HS, Kim WS, Song KM, Proceedings of the Korean Nuclear Society Spring Meeting, 2001.
  10. Peng DY, Robinson DB, Ind. Eng. Chem. Fundam., 15(8) (1976)
  11. Soave G, Chem. Eng. Sci., 27, 1197 (1972)
  12. Hammel EF, J. Chem. Phys., 18, 228 (1950)
  13. Souers PC, Hydrogen Properties for Fusion Energy, University of California Press, Los Angeles, California, 1986.
  14. Mittelhauser HM, Thodos G, Cryogenics, 4, 368 (1964)
  15. Bliesner RM, Leachman JW, Adam PM, J. Thermophys. Heat Transf., 28(4), 717 (2014)
  16. Flynn TM, Cryogenic Engineering: Revised and Expanded, second ed., Marcel Dekker, New York, 2005.
  17. Zuttel A, Borgschulte A, Schlapbach L (Eds.), Hydrogen as a Future Energy Carrier, vol. 45, Wiley-VCH Verlag GmbH & Co. KGaA Weinheim, 2012.
  18. Wolley HW, Scott RB, Brickwedde FG, J. Res. Nat. Bur. Stand., 41, 379 (1948)
  19. Glugla M, Doerr L, Laesser R, Murdoch DK, Yoshida H, Fusion Eng. Des., 61-62, 569 (2002)
  20. Cristescu IR, Glugla M, Antipenkov A, Beloglazov S, Caldwell-Nichols C, Cristescu I, Day C, Demange D, Mack A, Proceedings of the First IAEA Technical meeting on First Generation of Fusion Power Plants-Design and Technology, Vienna, Austria, 2005.
  21. Younglove BA, Thermophysical Properties of Fluids. I. Argon, Ethylene, Parahydrogen, Nitrogen, Nitrogen Trifluoride, and Oxygen, vol. 11, American Chemical Society and American Institute of Physics, New York, 1982.
  22. Leachman JW, Jacobsen RT, Penoncello SG, Lemmon EW, J. Phys. Chem. Ref Data, 38(3), 721 (2009)