화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.34, No.2, 495-499, February, 2017
Polyol-mediated synthesis of ZnO nanoparticle-assembled hollow spheres/nanorods and their photoanode performances
E-mail:
ZnO nanoparticle-assembled hollow spheres (raspberry-like) and elliptical nanorods (rice-like) were synthesized via a facile polyol process. Employing ethylene glycol as a polyol led to a ZnO nanoparticle-assembled hollow sphere structure, while diethylene glycol resulted in an elliptical nanorod structure. The ZnO hollow spheres had a higher Brunauer-Emmett-Teller (BET) surface area, better dye adsorption, more incident light trapping, and lower defect density than the ZnO elliptical nanorods. The ZnO hollow sphere-based dye-sensitized solar cells (DSSCs) exhibited a three-times higher current density than the ZnO elliptical nanorod-based DSSCs.
  1. Anta JA, Guillen E, Tena-Zaeta R, J. Phys. Chem., 116, 11413 (2012)
  2. Park SHK, Hwang CS, Ryu M, Yang S, Byun C, Shin J, Lee JI, Lee K, Oh MS, Im S, Adv. Mater., 21(6), 678 (2009)
  3. Reyes PI, Ku CJ, Duan Z, Xu Y, Garfunkel E, Lu Y, Appl. Phys. Lett., 101, 031118 (2012)
  4. Farzadkia M, Rahmani K, Gholami M, Esrafili A, Rahmani A, Rahmani H, Korean J. Chem. Eng., 31(11), 2014 (2014)
  5. Sherly ED, Vijaya JJ, Kennedy LJ, Meenakshisundaram A, Lavanya M, Korean J. Chem. Eng., 33(4), 1431 (2016)
  6. Selopal GS, Memarian N, Milan R, Concina I, Sberveglieri G, ACS Appl. Mater. Interfaces, 6, 11236 (2014)
  7. Wang CL, Liao JY, Zhao Y, Manthiram A, Chem. Commun., 51, 2848 (2015)
  8. Zheng HD, Tachibana Y, Kalantar-zadeh K, Langmuir, 26(24), 19148 (2010)
  9. Law M, Greene LE, Radenovic A, Kuykendall T, Liphardt J, Yang PD, J. Phys. Chem. B, 110(45), 22652 (2006)
  10. Chou TP, Zhang QF, Fryxell GE, Cao GZ, Adv. Mater., 19(18), 2588 (2007)
  11. Das PP, Agarkar SA, Mukhopadhyay S, Manju U, Ogale SB, Devi PS, Inorg. Chem., 53(8), 3961 (2014)
  12. Xu JL, Fan K, Shi WY, Li K, Peng TY, Sol. Energy, 101, 150 (2014)
  13. Ramakrishnan R, Aravind A, Devaki SJ, Varma MR, Mohan K, J. Phys. Chem. C, 118, 19529 (2014)
  14. Chen X, Bai Z, Yan X, Yuan H, Zhang G, Lin P, Zhang Z, Liu Y, Zhang Y, Nanoscale, 6, 4691 (2014)
  15. Shi Y, Zhu C, Wang L, Li W, Cheng C, Ho KM, Fung KK, Wang N, J. Mater. Chem., 22, 13097 (2012)
  16. Jana A, Das PP, Agarkar SA, Devi PS, Sol. Energy, 102, 143 (2014)
  17. Memarian N, Concina I, Braga A, Rozati SM, Vomiero A, Sberveglieri G, Angew. Chem.-Int. Edit., 50, 12321 (2011)
  18. Hu XL, Gong JM, Zhang LZ, Yu JC, Adv. Mater., 20(24), 4845 (2008)
  19. Thavasia V, Renugopalakrishnan V, Jose R, Ramakrishna S, Mater. Sci. Eng. R-Rep., 63, 81 (2009)
  20. Khoa NT, Kim SW, Yoo DH, Cho S, Kim EJ, Hahn SH, ACS Appl. Mater. Interfaces, 7, 3524 (2015)
  21. Barpuzary D, Patra AS, Vaghasiya JV, Solanki BG, Soni SS, Qureshi M, ACS Appl. Mater. Interfaces, 6, 12629 (2014)
  22. Dakhlaoui A, Jendoubi M, Smiri LS, Kanaev A, Jouini N, J. Cryst. Growth, 311(16), 3989 (2009)
  23. Hwang SH, Shin DH, Yun J, Kim C, Choi M, Jang J, Chem.-Eur. J., 20, 4439 (2014)
  24. Zhang Q, Myers D, Lan J, Jenekhe SA, Cao G, Phys. Chem. Chem. Phys., 14, 14982 (2012)
  25. Koo HJ, Kim YJ, Lee YH, Lee WI, Kim K, Park NG, Adv. Mater., 20(1), 195 (2008)
  26. Yun J, Hwang SH, Jang J, ACS Appl. Mater. Interfaces, 7, 2055 (2015)