화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.45, 391-403, January, 2017
Design and engineering of sculptured nano-structures for application in hydrophobicity
E-mail:
The design and engineering of suitable structures for enhancement of the hydrophobic property of a surface is one of the most challenging problems. In order to achieve a superhydrophobic structure we have designed and fabricated Mn nano-sculptured thin films with different shapes and dimensions, namely helical squares and helical pentagons on glass substrates. The contact angle (CA) of three liquids;α-bromonaphtalene (apolar), water and formamide (polar) to these surfaces was measured and the surface free energy was calculated. Changes to the geometry of the structure produced results ranging from hydrophilic (CA = 51°) to superhydrophobic (CA = 152°). The superhydrophobic structure is a helical square shaped structure with high porosity (deposited at 83°) which also shows the rose petal effect with the additional property of high adhesion. The resemblance of this structure to that of gecko feet, which shows both high adhesion forces and superhydrophobic property is discussed. All structures investigated in this work showed negative spreading coefficients with highest values for the largest contact angle for each type/shape of structure. The superhydrophobic sample also acts as a sticky surface which is confirmed by hysteresis of the contact angle obtained from advancing and receding contact angles measurements. The influence of the volume of liquid drop and different surface morphologies on the wetting transition from Cassie.Baxter to Wenzel states is also reported.
  1. Kesapragada SV, Victor P, Nalamasu O, Gall D, Nano Lett., 6, 854 (2006)
  2. Siabi-Garjan A, Savaloni H, Eur. Phys. J. B, 86, 257 (2013)
  3. Lee H, In S, Horn MW, Thin Solid Films, 565, 105 (2014)
  4. Singh JP, Liu DL, Ye DX, Picu RC, Lu TM, Wang GC, Appl. Phys. Lett., 84, 3657 (2004)
  5. Zahir M, Qaisar AN, Muhammad F, Opt. Commun., 346, 178 (2015)
  6. Minglin M, Randal MH, Curr. Opin. Colloid Interface Sci., 11, 193 (2006)
  7. Zhang X, Shi F, Niu J, Jiang Y, Wang Z, J. Mater. Chem., 18, 621 (2008)
  8. Gao LC, McCarthy TJ, Zhang X, Langmuir, 25(24), 14100 (2009)
  9. Roach P, Shirtcliffe NJ, Newton MI, Soft Matter, 4, 224 (2008)
  10. Ebert D, Bhushan B, J. Colloid Interface Sci., 368, 584 (2012)
  11. Zhao N, Xie QD, Weng LH, Wang SQ, Zhang XY, Xu J, Macromolecules, 38(22), 8996 (2005)
  12. Shang HM, Wang Y, Limmer SJ, Chou TP, Takahashi K, Cao GZ, Thin Solid Films, 472(1-2), 37 (2005)
  13. Bartell FE, Cardwell PH, J. Am. Chem. Soc., 64, 494 (1942)
  14. Perston DJ, Miljkovic N, Sack J, Enright R, Queeney J, Wang EN, Appl. Phys. Lett., 105, 011601 (2014)
  15. Kreuer KD, Fuel Cells: Selected Entries from the Encyclopedia of Sustainability Science and Technology, Springer, Berlin, 2014, pp. 755.
  16. Demangeat C, Parlebas JC, Rep. Prog. Phys., 65, 1679 (2002)
  17. Siabi-Garjan A, Savaloni H, Beik-Mohammadi J, Grayeli-Korji AR, Philos. Mag. B-Phys. Condens. Matter Stat. Mech. Electron. Opt. Magn. Prop., 93, 3527 (2013)
  18. Yuan ZY, Zhang ZL, Du GH, Ren TZ, Su BL, Chem. Phys. Lett., 378(3-4), 349 (2003)
  19. Paulsen JA, Ring AP, Lo CCH, Snyder JE, Jiles DC, J. Appl. Phys., 97, 490 (2005)
  20. Kwok Y, Neumann AW, Adv. Colloid Interface Sci., 81, 167 (1999)
  21. Fowkes FM, Ind. Eng. Chem. Res., 56, 40 (1964)
  22. Fowkes FM, J. Adhes., 4, 155 (1972)
  23. Fowkes FM, J. Colloid Interface Sci., 28, 493 (1968)
  24. Owens DK, Wendt RC, J. Appl. Polym. Sci., 13, 1741 (1969)
  25. Wu S, J. Polym. Sci. C, 34, 19 (1971)
  26. Wu S, J. Adhes., 5, 39 (1973)
  27. Fox HW, Zisman WA, J. Colloid Sci., 7, 109 (1952)
  28. Fox HW, Zisman WA, J. Colloid Sci., 7, 428 (1952)
  29. van Oss CJ, Good RJ, Chaudhury MK, J. Colloid Interface Sci., 111, 378 (1986)
  30. van Oss CJ, Interfacial Force in Aqueous Media, Taylor & Francis, New York, 2006, pp. 9.
  31. Sun CC, Lee SC, Hwang WC, Hwang JS, Tang IT, Fu YS, Mater. Trans., 47, 2533 (2006)
  32. Messier R, Giri AP, Roy RA, J. Vac. Sci. Technol. A, 2, 496 (1984)
  33. Eckertova L, Physics of Thin Flms, second ed., Plenum Press, Springer, Berlin, 1986, pp. 28-49.
  34. Stalder AF, Kulik G, Sage D, Barbieri L, Hoffmann P, Colloids Surf. A: Physicochem. Eng. Asp., 286, 92 (2006)
  35. Messier R, J. Vac. Sci. Technol. A, 4, 490 (1986)
  36. Savaloni H, Player MA, Vacuum, 46, 167 (1995)
  37. Savaloni H, Player MA, Thin Solid Films, 256(1-2), 48 (1995)
  38. Abelmann L, Lodder C, Thin Solid Films, 305(1-2), 1 (1997)
  39. Yang C, Tartaglino U, Persson BNJ, Phys. Rev. Lett., 97, 1161 (2006)
  40. Ambrosia MS, Haa MY, Balachandar S, Appl. Surf. Sci., 282, 211 (2013)
  41. Murakami D, Jinnai H, Takahara A, Langmuir, 30(8), 2061 (2014)
  42. Cassie ABD, Baxter S, Trans. Faraday Soc., 40, 546 (1944)
  43. Wenzel RN, Ind. Eng. Chem., 28, 988 (1936)
  44. He B, Patankar NA, Lee J, Langmuir, 19(12), 4999 (2003)
  45. Deng T, Varanasi KK, Hsu M, Bhate N, Keimel C, Stein J, Blohm M, Appl. Phys. Lett., 94, 1331 (2009)
  46. Reyssat M, Yeomans JM, Qucre D, EPL, 81, 260 (2008)
  47. Jung YC, Bhushan B, Scr. Mater., 57, 1057 (2007)
  48. Oliver JF, Huh C, Manson SG, J. Colloid Interface Sci., 59, 568 (1977)
  49. Reyssat M, Yeomans JM, Quere D, EPL, 81, 260061 (2008)
  50. Yoshimitsu Z, Nakajima A, Watanabe T, Hashimoto K, Langmuir, 18(15), 5818 (2002)
  51. Patankar NA, Langmuir, 20(17), 7097 (2004)
  52. Butt HJ, Graf K, Kappl M, Physics and Chemistry of Interfaces, second ed., Wiley-VCH Verlag, Weinheim, Berlin, 2003, pp. 8.
  53. Patankar NA, Langmuir, 26(11), 8941 (2010)
  54. Zhao N, Shi F, Wang ZQ, Zhang X, Langmuir, 21(10), 4713 (2005)
  55. Decher G, Hong JD, Chem. Macromol. Symp., 46, 321 (1991)
  56. Decher G, Schlenoff JB, Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials, Wiley-VCH, Weinheim Germany, 2002, pp. 1.
  57. Savaloni H, Esfandiar A, Appl. Surf. Sci., 257(22), 9425 (2011)
  58. Neinhuis C, Barthlott W, Ann. Bot., 79, 667 (1997)
  59. Promraksa A, Chuang YC, Chen LJ, J. Colloid Interface Sci., 418, 8 (2014)
  60. Cardoso MR, Tribuzi V, Balogh DT, Misoguti L, Mendonca CR, Appl. Surf. Sci., 257(8), 3281 (2011)
  61. Liu K, Du J, Wu J, Jiang L, Nanoscale, 4, 768 (2012)
  62. Stark AY, Badge I, Wucinich NA, Sullivan TW, Niewiarowski PH, Dhinojwala A, PNAS, 16, 6340 (2013)
  63. Liu Y, Tang J, Wang R, Lu H, Li L, Kong Y, Qi K, Xin H, J. Mater. Chem., 17, 1071 (2007)
  64. Kustandi TS, Samper VD, Yi DK, Ng WS, Neuzil P, Sun WX, Adv. Funct. Mater., 17(13), 2211 (2007)
  65. Barthlott W, Neinhuis C, Planta, 202, 1 (1997)
  66. Feng L, Zhang YA, Xi JM, Zhu Y, Wang N, Xia F, Jiang L, Langmuir, 24(8), 4114 (2008)
  67. Israelachvili JN, Intermolecular and Surface Forces, second ed., Academic Press, London, 1985, pp. 223.
  68. Stanton MM, Ducker RE, MacDonald JC, Lambert CR, McGimpsey WG, J. Colloid Interface Sci., 367, 502 (2012)