화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.45, 78-84, January, 2017
Comparison of chalcopyrite and kesterite thin-film solar cells
E-mail:,
In this study, we investigate methods of improving the efficiency of Cu2ZnSn(S,Se)4 (CZTS)-based solar cells by comparing Cu(In,Ga)Se2 (CIGSe)- and CZTS-based absorber layers. In particular, the CZTS-based absorber exhibits lower current characteristics than the CIGSe absorber layer in terms of the band gap alignment and electron-hole recombination at the CdS-absorber interface. Moreover, we demonstrate that defects are one of the causes of the voltage loss. In order to improve the efficiency of CZTS-based solar cells, it is important to control the band gap alignment at the CdS-absorber layer interface and to suppress the formation of secondary phases inside the absorber.
  1. Best Research-Cell Efficiencies Chart in the US Department of Energy’s National Renewable Energy Laboratory, www.nrel.gov/ncpv/.
  2. Wang W, Winkler MT, Gunawan O, Gokmen T, Todorov TK, Zhu Y, Mitzi DB, Adv. Eng. Mater., 4, 130146 (2014)
  3. Wadia C, Alivisatos AP, Kammen DM, Environ. Sci. Technol., 43, 2072 (2009)
  4. Mitzi DB, Gunawan O, Todorov TK, Barkhouse DAR, Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 371, 201104 (2013)
  5. Son DH, Kim DH, Park SN, Yang KJ, Nam D, Cheong H, Kang JK, Chem. Mater., 27, 5180 (2015)
  6. Yang KJ, Sim JH, Son DH, Kim DH, Kim GY, Jo W, Song S, Kim J, Nam D, Cheong H, Kang JK, Prog. Photovolt. Res. Appl., 23, 1771 (2015)
  7. Fairbrother A, Fontane X, Izquierdo-Roca V, Placidi M, Sylla D, Espindola-Rodriguez M, Lopez-Marino S, Pulgarın FA, Vigil-Galan O, Perez-Rodrıguez A, Saucedo E, Prog. Photovolt. Res. Appl., 22, 479 (2014)
  8. Vigil-Galan O, Espindola-Rodriguez M, Courel M, Fontane X, Sylla D, Izquierdo-Roca V, Fairbrother A, Saucedo E, Perez-Rodriguez A, Sol. Energy Mater. Sol. Cells, 117, 246 (2013)
  9. Colombara D, Robert EVC, Crossay A, Taylor A, Guennou M, Arasimowicz M, Malaquias JCB, Djemour R, Dale PJ, Sol. Energy Mater. Sol. Cells, 123, 220 (2014)
  10. Watjen JT, Engman J, Edoff M, Platzer-Bjorkman C, Appl. Phys. Lett., 100, 173510 (2012)
  11. Kumar M, Dubey A, Adhikari N, Venkatesan S, Qiao Q, Energy Environ Sci., 8, 3134 (2015)
  12. Huang TJ, Yin X, Qi G, Gong H, Phys. Status Solidi Rap. Res. Lett., 8, 735 (2014)
  13. Chen S, Walsh A, Gong XG, Hei SH, Adv. Eng. Mater., 11, 1522 (2013)
  14. Chen S, Yang JH, Gong XG, Walsh A, Wei SH, Phys. Rev. B, 81, 245204 (2010)
  15. Yin WJ, Wu Y, Wei SH, Noufi R, Al-Jassim MM, Yan Y, Adv. Eng. Mater., 4, 130071 (2014)
  16. Yang KJ, Sim JH, Jeon B, Son DH, Kim DH, Sung SJ, Hwang DK, Song S, Khadka DB, Kim J, Kang JK, Prog. Photovolt. Res. Appl., 23, 862 (2015)
  17. Yang KJ, Sim JH, Son DH, Kim DH, Kang JK, Curr. Appl. Phys., 15(11), 1512 (2015)
  18. Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M, Prog. Photovolt. Res. Appl., 19, 894 (2011)
  19. Lee YS, Gershon T, Gunawan O, Todorov TK, Gokmen T, Virgus Y, Guha S, Adv. Eng. Mater., 5, 140137 (2015)
  20. Jo HJ, Jeon DH, Ko BS, Sung SJ, Hwang DK, Kang JK, Kim DH, Curr. Appl. Phys., 14(3), 318 (2014)
  21. Jo HJ, Kim DH, Kim C, Hwang DK, Sung SJ, Kim JH, Bae IH, J. Korean Phys. Soc., 60, 1708 (2012)
  22. Son DH, Kim DH, Yang KJ, Nam D, Gansukh M, Cheong H, Kang JK, Phys. Status Solidi A-Appl. Res., 211, 946 (2014)
  23. Winkler MT, Wang W, Gunawan O, Hovel HJ, Todorov TK, Mitzi DB, Energy Environ. Sci., 7, 1029 (2014)
  24. Chen S, Walsh A, Yang JH, Gong XG, Sun L, Yang PX, Chu JH, Wei SH, Phys. Rev. B, 83, 125201 (2011)
  25. Zhang SB, Wei SH, Zunger A, J. Appl. Phys., 83, 3192 (1998)
  26. Wang K, Gunawan O, Todorov T, Shin B, Chey SJ, Bojarczuk NA, Mitzi D, Guha S, Appl. Phys. Lett., 97, 143508 (2010)
  27. Hegedus SS, Shafarman WN, Prog. Photovolt. Res. Appl., 12, 155 (2004)
  28. Rau U, Schock HW, Appl. Phys. A-Mater. Sci. Process., 69, 131 (1999)
  29. Hall RN, Phys. Rev., 87, 387 (1952)
  30. Todorov TK, Tang J, Bag S, Gunawan O, Gokmen T, Zhu Y, Mitzi DB, Adv. Eng. Mater., 3, 34 (2013)
  31. Barkhouse DAR, Gunawan O, Gokmen T, Todorov TK, Mitzi DB, Prog. Photovolt. Res. Appl., 20, 6 (2012)
  32. Yang KJ, Son DH, Sung SJ, Sim JH, Kim YI, Park SN, Jeon DH, Kim J, Hwang DK, Jeon CW, Nam D, Cheong H, Kang JK, Kim DH, J. Mater. Chem. A, http://dx.doi.org/10.1039/c6ta01558a. (2016)
  33. Gokmen T, Gunawan O, Todorov TK, Mitzi DB, Appl. Phys. Lett., 103, 103506 (2013)
  34. Scragg JJ, Kubart T, Watjen JT, Ericson T, Linnarsson MK, Platzer-Bjorkman C, Chem. Mater., 925, 3162 (2013)
  35. Scragg JJ, Dale PJ, Colombara D, Peter LM, ChemphysChem, 13, 3035 (2012)
  36. Duan HS, Yang WB, Bob B, Hsu CJ, Lei B, Yang Y, Adv. Funct. Mater., 23(11), 1466 (2013)
  37. Herberholz R, Igalson M, Schock HW, J. Appl. Phys., 83, 318 (1998)
  38. Kubiaczyk A, Nawrocka M, Igalson M, Opto-Electron. Rev., 8, 378 (2000)
  39. Fernandes PA, Sartori AF, Salome PMP, Malaquias J, da Cunha AF, Graca MPF, Gonzalez JC, Appl. Phys. Lett., 100, 233504 (2012)
  40. Wei SH, Zhang SB, J. Phys. Chem. Solids, 66, 1994 (2005)
  41. Bailey CL, Liborio L, Mallia G, Tomic S, Harrison NM, Phys. Rev. B, 81, 205214 (2010)
  42. Chen S, Wang LW, Walsh A, Gong XG, Wei SH, Appl. Phys. Lett., 101, 223901 (2012)
  43. Kim GY, Son DH, Nguyen TTT, Yoon S, Kwon M, Jeon CW, Kim DH, Kang JK, Jo W, Prog. Photovolt. Res. Appl., 24, 292 (2016)
  44. Nam D, Cho S, Sim JH, Yang KJ, Son DH, Kim DH, Kangb JK, Kwon MS, Jeon CW, Cheong H, Sol. Energy Mater. Sol. Cells, 149, 226 (2016)