화학공학소재연구정보센터
Clean Technology, Vol.22, No.4, 308-315, December, 2016
졸겔법으로 제조한 탄소피복된 SiOx/ZnO 복합체의 합성 및 전기화학적 특성
Synthesis and Electrochemical Characteristics of Carbon Coated SiOx/ZnO Composites by Sol-gel Method
E-mail:
초록
수명특성이 우수한 실리콘 음극재를 제조하기 위해 졸겔법을 통해 SiOx/ZnO 복합체를 제조하였고, 제조된 복합체는 PVC 를 탄소 전구체로 하여 탄소를 피복하였다. 복합체에 포함된 ZnO를 HCl로 제거하여 내부에 빈 공간을 만들어 충· 방전에 따른 실리콘의 부피변화를 완화할 수 있게 하였다. 합성된 복합체의 결정구조와 형상을 파악하기 위해 XRD, SEM, TEM 분석을 실시하였다. 탄소 피복된 복합체에 포함된 탄소함량을 TGA를 통해 알아보았으며, 복합체의 기공구조를 확인하기 위해 BET 비표면적 분석과 BJH 기공분포를 확인하였다. 탄소의 추가로 향상된 전기전도성을 측정하였으며, 전기화학적 특성은 AC 임피던스 측정과 충.방전 및 수명특성을 확인하였다. SiOx/ZnO시료에 탄소를 피복할 경우에 전기전도도가 증가하였으며, 방전용량도 증가하였다. 염산으로 ZnO를 제거한 시료의 경우에 표면적은 증가하였으나, 전지의 방전용량은 오히려 감소하였다. 탄소를 피복하지 않은 SiOx/ZnO 시료의 경우에 방전용량이 매우 낮았으며, 탄소를 피복한 후의 시료는 높은 충방전용량을 나타내었다. 수명특성의 경우, C-SiOx/ZnO 복합체(Zn : Si : C = 1 : 1 : 8)가 0.2 C의 전류량에서 50 사이클에서 815 mAh g-1의 용량으로 기존 흑연계 음극재보다 높은 용량을 나타내었다.
SiOx/ZnO composites were prepared from sol-gel method for excellent cycle life characteristics. The composites were coated by PVC as a carbon precursor. ZnO removal to create a void space therein was able to buffer the volume change during charge and discharge. To determine the crystal structure and the shape of the synthesized composite, XRD, SEM, TEM analysis was performed. The carbon contents in the composites were confirmed by TGA. The pore structure and pore size distribution of the composite was measured with the BET specific surface area analysis and BJH pore size distribution. Enhanced electric conductivity by carbon addition was determined from powder resistance measurement. Electrochemical properties were measured with the AC impedance and the charge and discharge cycle life characteristics. When carbon was coated on the SiOx/ZnO sample, the electrical conductivity and the discharge capacity were increased. After removal of ZnO with HCl the surface area of the sample was increased, but the discharge capacity was decreased. SiOx/ZnO sample without acarbon coating showed very low discharge capacity, and after carbon coating the sample showed high discharge capacity. For cycle life characteristics, C-SiOx/ZnO composite (Zn : Si : C = 1 : 1 : 8) with a capacity of 815 mAh g-1 at 50 cycle and 0.2 C has higher capacity than existing graphite-based anode materials.
  1. Liu X, Xie K, Zheng CM, Wang J, Jing ZQ, J. Power Sources, 214, 119 (2012)
  2. Ma X, Liu M, Gan L, Tripathi PK, Zhao Y, Zhu D, Chen L, Phys. Chem. Chem. Phys., 16(9), 4135 (2014)
  3. Yao Y, Zhang JJ, Xue LG, Huang T, Yu AS, J. Power Sources, 196(23), 10240 (2011)
  4. Li W, Li ZP, Kang W, Tang Y, Zhang Z, Yang X, Lee C, J. Mater. Chem. A, 2, 12289 (2014)
  5. Huang WL, Ming Liang K, Ren Gu S, J. Non-Cryst. Solids, 258(1-3), 234 (1999)
  6. Homaunmir V, Tohidi SH, Grigorya G, Shirazi MAZ, J. Nanopart. Res., 2013, 1 (2013)
  7. Ryu JH, Kim JW, Sung YE, Oh SM, Electrochem. Solid State Lett., 7(10), A306 (2004)
  8. Wang H, Wu P, Shi HM, Lou FJ, Tang YW, Zhou TG, Zhou YM, Lu TH, Mater. Res. Bull., 55, 71 (2014)
  9. Martinez JR, Palomares-Sanchez S, Ortega-Zarzosa G, Ruiz F, Chumakov Y, Mater. Lett., 60(29-30), 3526 (2006)
  10. Xu X, Wang P, Qi Z, Ming H, Xu J, Liu H, Ge W, J. Phys. Condens. Matter, 15(1503), 607 (2003)
  11. Yao Y, Zhang JJ, Xue LG, Huang T, Yu AS, J. Power Sources, 196(23), 10240 (2011)
  12. Park JB, Lee KH, Jeon YJ, Lim SH, Lee SM, Electrochim. Acta, 133, 73 (2014)
  13. Du Y, Hou M, Zhou D, Wang Y, Wang C, Xia Y, J. Energy Chem., 23(3), 315 (2014)
  14. Shen X, Mu D, Chen S, Xu B, Wu B, Wu F, J. Alloy. Compd., 552, 60 (2013)
  15. Shen L, Wang Z, Chen L, RSC Adv., 4(29), 15314 (2014)
  16. Wu P, Wang H, Tang Y, Zhou Y, Lu T, ACS Appl. Mater. Interfaces, 6(5), 3546 (2014)
  17. Iwamura S, Nishihara H, Kyotani T, J. Phys. Chem. C, 116(10), 6004 (2012)
  18. Gan L, Guo HJ, Wang ZX, Li XH, Peng WJ, Wang JX, Huang SL, Su MR, Electrochim. Acta, 104, 117 (2013)
  19. Guo J, Chen X, Wang C, J. Mater. Chem., 20(24), 5035 (2010)
  20. Shen X, Mu D, Chen S, Wu B, Wu F, ACS Appl. Mater. Interfaces, 5(8), 3118 (2013)
  21. Wang DS, Gao MX, Pan HG, Wang JH, Liu YF, J. Power Sources, 256, 190 (2014)
  22. Xie J, Wang GQ, Huo Y, Zhang SC, Cao GS, Zhao XB, Electrochim. Acta, 135, 94 (2014)
  23. Tu J, Yuan Y, Zhan P, Jiao H, Wang X, Zhu H, Jiao S, J. Phys. Chem. C, 118, 7357 (2014)
  24. Lu ZW, Zhang LQ, Liu XJ, J. Power Sources, 195(13), 4304 (2010)
  25. Lv PP, Zhao HL, Wang J, Liu X, Zhang TH, Xia Q, J. Power Sources, 237, 291 (2013)
  26. Usui H, Kono T, Sakaguchi H, Int. J. Electrochem. Sc., 7, 4322 (2012)
  27. Lee JH, Kim WJ, Kim JY, Lim SH, Lee SM, J. Power Sources, 176(1), 353 (2008)
  28. Yoon S, Park CM, Kim H, Sohn HJ, J. Power Sources, 167(2), 520 (2007)