화학공학소재연구정보센터
Polymer(Korea), Vol.40, No.6, 907-914, November, 2016
실리카 나노입자 표면 개질이 UV 경화형 실리카/폴리우레탄 아크릴레이트 나노복합체의 기계적 성질에 미치는 영향
Effects of Surface Modification of Silica Nanoparticles on the Mechanical Properties of UV-curable Silica/Polyurethane Acrylate Nanocomposite
E-mail:
초록
본 연구에서는 실리카 입자 표면을 (3-trimethoxysilylpropyl)diethylenetriamine(TPDT)로 처리하여 아미노기를 도입한 후, 마이클 부가 반응이 가능한 3-(acryloyloxy)-2-hydroxypropylmethacrylate(AHM)과 반응시켜 자유 라디칼 중합이 가능한 methacrylate기를 도입하였다. 순수 실리카, TPDT 혹은 TPDT/AHM으로 개질된 실리카를 충전제로 사용하여 urethane acrylate계 수지와 광중합법으로 나노복합체를 제조하였다. UV 수지 중합체와 순수 실리카, TPDT 로 개질된 실리카 및 TPDT/AHM으로 개질된 실리카를 각각 3.0 wt% 포함하는 나노복합체의 탄성률을 측정한 결과, TPDT/AHM으로 개질된 실리카 나노복합체의 탄성률이 333.1MPa으로 UV 수지 중합체보다 30.8% 증가하였음을 확인하였다.
In this study, we prepared silica nanoparticles with methacrylate groups on the silica surface using a two-step modification process. First, silica particles were silanized with (3-trimethoxysilylpropyl)diethylenetriamine(TPDT), and then a Michael addition reaction was performed between the N-H groups from the TPDT modified silica surface and the acrylate groups of 3-(acryloyloxy)-2-hydroxypropylmethacrylate(AHM). UV-curable urethane acrylate nanocomposites were subsequently prepared by incorporating (0-5 wt%) pristine silica, TPDT modified silica or TPDT/AHM modified silica as fillers. The incorporation of only 3.0 wt% of TPDT/AHM modified silica particles increased Young’s modulus to 333.1MPa which represents a 30.8% improvement over UV-cured urethane acrylates and the best performance of all three fillers.
  1. Kim O, Han S, Kim CK, Polym. Korea, 29(1), 102 (2005)
  2. Jeon HN, Kim JH, Ha KR, Polym. Korea, 36(3), 372 (2012)
  3. Hwang JH, Song KC, Korean Chem. Eng. Res., 49(3), 277 (2011)
  4. Decker C, Masson F, Schwalm R, Macromol. Mater. Eng., 288, 17 (2003)
  5. Murugavel R, Voigt A, Walawalkar MG, Roesky HW, Chem. Rev., 96(6), 2205 (1996)
  6. Salon MCB, Belgacem MN, Colloids Surf. A: Physicochem. Eng. Asp., 366, 147 (2010)
  7. Gelest, Inc., Silane Coupling Agents, Mossisville, PA, USA, 2006.
  8. Halvorson RH, Erickson RL, Davidson CL, Dent. Mater., 19, 327 (2003)
  9. Lee S, Ha KR, Korean J. Chem. Eng., 33(8), 2469 (2016)
  10. Seo B, Park S, Kim S, Ha KR, Polym. Korea, 40(3), 421 (2016)
  11. ASTM D 638. Standard test method for tensile properties of plastics (2003).
  12. Stansbury JW, Dickens SH, Dent. Mater., 17, 71 (2001)
  13. Yu X, Yi B, Wang X, Eur. Polym. J., 44, 3997 (2008)
  14. Nayak BR, Mathias LJ, J. Polym. Sci. A: Polym. Chem., 43(22), 5661 (2005)
  15. Xu XM, Li BJ, Lu HM, Zhang ZJ, Wang HG, J. Appl. Polym. Sci., 107(3), 2007 (2008)
  16. Park SC, Kim HG, Min KE, Polym. Korea, 37(1), 100 (2013)
  17. Yoo SH, Song HJ, Kim CK, Polym. Korea, 36(6), 721 (2012)
  18. Dickens SH, Stansbury JW, Choi KM, Floyd CJE, Macromolecules, 36(16), 6043 (2003)
  19. Wu QJ, Henriksson M, Liu X, Berglund LA, Biomacromolecules, 8(12), 3687 (2007)
  20. Kim DW, Lim MJ, Kim IS, Seo JC, Han HS, Proc. Org. Coat., 77, 1045 (2014)
  21. Sperling LH, Introduction To Physical Polymer Science, John Wiley & Sons. Inc., Hoboken NJ, p 230 (2005).
  22. Yoo TW, Woo JS, Ji JH, Lee BM, Kim SS, Biomater. Res., 16, 32 (2012)
  23. Kim HG, Polym. Korea, 40(1), 9 (2016)