화학공학소재연구정보센터
Polymer(Korea), Vol.24, No.4, 499-504, July, 2000
양극산화된 탄소섬유가 복합재료의 계면결합력에 미치는 영향
Effect of Anodized Carbon Fiber Surfaces on Interfacial Adhesion of Carbon Fiber-reinforced Composites
E-mail:
초록
고강도 PAN계 탄소섬유를 양극산화하여 섬유의 표면 관능기와 표면 자유에너지, 그리고 최종복합재료의 기계적 특성 향상에 미치는 영향을 고찰하였다. FT-IR과 XPS측정 결과, 양극산화에 의해 형성된 섬유 표면의 산소 관능기는 섬유의 표면 에너지와 복합재료의 층간 전단강도(ILSS)에 큰 영향을 주는 것으로 나타났다. 그리고 젖음액의 wicking rate에 근거한 접촉각 측정에서 탄소섬유의 양극산화는 표면 자유에너지의 극성 요소를 크게 증가시키며, 이것은 표면 에너지 관점에서 살펴볼 때 좋은 젖음성이 최종 복합재료의 섬유와 에폭시 수지 매트릭스사이의 계면결합력 향상에 중
The effect of anodic oxidation on high strength PAN-based carbon fibers has been studied in terms of surface functionality and surface energetics of the fiber surfaces, resulting in improving the mechanical properties of composites. According to FT-IR and XPS measurements, it reveals that the oxygen functional groups on fiber surfaces induced by an anodic oxidation largely influence the surface energetics of fibers or the mechanical interfacial properties of composites, such as the interlaminar shear strength (ILSS) of composites. According to the contact angle measurements based on the wicking rate of a test liquid, it is observed that anodic oxidation does lead to an increase in surface free energy of the carbon fibers, mainly due to the increase of its specific(or polar) component. From the surface energetic point of view, it is found that good wetting plays an important role in improving the degree of adhesion at interfaces between fiber and epoxy resin matrix of the resulting composites. Also, a direst linear relationship is shown between O1s/C1s ratio and ILSS or between specific component and ILSS of the composites for this system.
  1. Schwartz MM, "Composite Materials Handbook," 2nd Ed., McGraw-Hill, New York, 1992 (1992)
  2. Fitzer E, "Carbon Fibers and Their Composites," Springer-Verlag, New York, 1985 (1985)
  3. Park SJ, "Interfacial Forces and Fields: Theory and Applications," ed. by J.P. Hsu, chap. 9, Marcel Dekker, New York, 1999 (1999)
  4. Ball OP, Manocha LM, Carbon, 12, 417 (1974) 
  5. Donnett JB, Bansal RC, "Carbon Fibers," 2nd Ed., Marcel Dekker, New York, 1990 (1990)
  6. Hughes JDH, Compos. Sci. Technol., 41, 13 (1991) 
  7. Fitzer E, Popovska N, Rensch HP, J. Adhes., 36, 139 (1991)
  8. Park SJ, Donnet JB, J. Colloid Interface Sci., 206(1), 29 (1998) 
  9. Yamaki JI, Katayama Y, J. Appl. Polym. Sci., 19, 2897 (1975) 
  10. Li SK, Smith RP, Neumann AW, J. Adhes., 17, 105 (1984)
  11. Donnet JB, Brendl M, Dhami TL, Bahl OP, Carbon, 24, 757 (1986) 
  12. Chwastiak S, J. Colloid Interface Sci., 42, 298 (1973) 
  13. Kim YC, Park SJ, J. Appl. Polym. Sci., 74(1), 15 (1999) 
  14. Charrier JM, "Polymeric Materials and Processing," Hanser, New York, 1990 (1990)
  15. Washburn EW, Phys. Rev., 17, 273 (1921) 
  16. Rho SB, Lim MA, Polym.(Korea), 23(5), 662 (1999)
  17. Ma K, Chung TS, Good RJ, J. Polym. Sci. B-Polym. Phys., 36(13), 2327 (1998) 
  18. Wang T, Sherwood PMA, Chem. Mater., 6, 788 (1994) 
  19. Weitzsacker CL, Sherwood PMA, Surf. Interface Anal., 23, 551 (1995) 
  20. Owens DK, Wendt RC, J. Appl. Polym. Sci., 13, 1741 (1969) 
  21. Hammer GE, Drzal LT, Appl. Surf. Sci., 4, 340 (1980) 
  22. Park SJ, Cho MS, Lee JR, Polym.(Korea), 23(5), 717 (1999)
  23. Israelachvili JN, "Intermolecular and Surface Forces," 2nd Ed., Academic Press, San Diego, 1992 (1992)