화학공학소재연구정보센터
Polymer(Korea), Vol.24, No.4, 488-498, July, 2000
P4VP과 PDP로 이루어진 Molecular Bottle-Brush 의 Order-Disorder Transition에 미치는 P4VP 분자량의 영향에 관한 연구
Effects of Molecular Weight of Poly(4-vinylpyridine) on the Order-Disorder Transition of Molecular Bottle-brush Composed of Poly(4-vinylpyridine) and 3-Pentadecylphenol
E-mail:
초록
주쇄로 poly(4-vinylpyridine)(P4VP)과 양친매성 측쇄로 3-pentadecylphenol(PDP)의 수소결합을 통해서 molecular bottle-brush를 제조하였다. 제조된 bottle-brush에 대하여 P4VP의 pyridine기 대 PDP의 몰비 (x)와 P4VP 분자량에 따른 액정성의 구조, 상전이온도(TODT)와 bottle-brush 층간거리 (Lp)변화에 대하여 고찰하였다. P4VP-PDPxbottle-brush는 상온영역에서 미세상분리를 이루고 이Tsmss 라멜라구조로 조사되었다. Bottle-brush의 온도에 따른 상거동에 대한 조사에서 상한임계온도(UCST)거동을 나타내었다. 또한 P4VP의 분자량별로 x가 0.8-0.9일 때 최대온도를 나타내었으며, P4VP의 분자량이 증가함에 EK라서 상정이가 노은 온도에서 일어났다. 이러한 결과는 주쇄인 P4VP의 유동성과 라멜라구조의 크기와 규칙서에 영향을 받음을 알 수 있었다. Bottle-brush의 라멜라구조 분석시 bottle-brush의 Lp는 35 Å에서 40 Å로 x보다는 P4VP의 분자량에 더 큰 영향을 받았다. P4VP의 분자량이 증가함에 따라서 Lp도 증가하였으나 일정 크기이상으로 분자량이 커졌을 경우, 오히려 거리가 감소하거나 증가하지 않는 결과를 얻었다.
Molecular bottle-brush was prepared by hydrogen-bonding between poly(4-vinylpyridine)(P4VP) as main chain and 3-pentadecylphenol(PDP) as amphiphilic side chain. Variation of long period(Lp), order-disorder transition temperature(TODT) and mesomorphic structure of bottle-brush were investigated by changing various mole ratio(x) of pyridine group in P4VP and PDP and molecular weight of P$VP. Upper critical solution temperature(UCST) behaviour was observed. For x 0.8-0.9, maximum critical temperature was found. As molecular weight of P4VP was increased, phase transition occurred at higher temperature. It was found that phase begaviour of the bottel-brush was affected by mobility of P$VP as well as size and regularity of lamellar structure. The Lp determined from analysis of crystal structure was in the range of 35Å and 40Å and was more affected by the molecular weight of P4VP than by mole ratio(x). However, if the molecular weight of P4VP was high, Lp value was little affected.
  1. Lehn JM, Angew. Chem.-Int. Edit., 27, 89 (1988) 
  2. Lehn JM, Angew. Chem.-Int. Edit., 29, 1304 (1990) 
  3. Imrie CT, Trends Polym. Sci., 3, 22 (1995)
  4. Stewart D, Imrie CT, J. Mater. Chem., 5(2), 223 (1995) 
  5. ten Brinke G, Ikkala O, Trends Polym. Sci., 7, 213 (1997)
  6. Fredrickson GH, Macromolecules, 26, 2825 (1993) 
  7. Cao Y, Smith P, Polymer, 34, 3139 (1993) 
  8. Wintermantel M, Gerle M, Fischer K, Schmidt M, Wataoka I, Urakawa H, Kajiwara K, Tsukahara Y, Macromolecules, 29(3), 978 (1996) 
  9. Ruokolainen J, Tenbrinke G, Ikkala O, Torkkeli M, Serimaa R, Macromolecules, 29(10), 3409 (1996) 
  10. Ruokolainen J, Torkkeli M, Serimaa R, Komanschek E, Tenbrinke G, Ikkala O, Macromolecules, 30(7), 2002 (1997) 
  11. Ruokolainen J, Ten Brinken G, Ikkala O, Torkkeli M, Serimaa R, Tanner J, Colloids Surf., 30, 2002 (1997)
  12. Varshney SK, Zhong XF, Eisenberg A, Macromolecules, 26, 701 (1993) 
  13. Nugay N, Kucukyavuz Z, Kucukyavuz S, Polym. Int., 32, 93 (1993)
  14. Creutz S, Teyssie P, Jerome R, Macromolecules, 30(1), 1 (1997) 
  15. Berkowitz JB, Michael Y, Fuoss RM, J. Polym. Sci., 28, 69 (1958) 
  16. Ruokolainen J, Ten Brinken G, Ikkala O, Torkkeli M, Serimaa R, Colloids Surf., 147, 241 (1999) 
  17. Ruokolainen J, Torkkeli M, Serimaa R, Vahvaselka S, Saariaho M, Tenbrinke G, Ikkala O, Macromolecules, 29(20), 6621 (1996) 
  18. Tanaka F, Ishida M, Macromolecules, 30(6), 1836 (1997) 
  19. Cesteros LC, Isasi JR, Katime I, Macromolecules, 26, 2323 (1993) 
  20. Cesteros LC, Isasi JR, Katime I, Macromolecules, 26, 7259 (1993)
  21. Takahashi H, Mamola K, Plyler EK, J. Mol. Spectrosc., 21, 217 (1966) 
  22. Lee JY, Painter PC, Coleman MM, Macromolecules, 21, 954 (1998) 
  23. Fredrickson GH, Bates FS, Ann. Rev. Mater. Sci., 26, 501 (1996) 
  24. Ikkala O, Ruokolainen J, Tenbrinke G, Torkkeli M, Serimaa R, Macromolecules, 28(21), 7088 (1995)