화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.26, No.9, 460-467, September, 2016
K2CO3 처리된 Coal Tar Pitch 활성탄 전극의 결정성 및 EDLC 성능
Structural Characterization and EDLC-Electrode Performance of Coal-Tar-Pitch Activated Carbon Using K2CO3 Treatment
E-mail:
Activated carbons (ACs) have been used as EDLC (electric double-layer capacitor) electrode materials due to their high specific area, stability, and ecological advantages. In order to prepare ACs with high density and crystallinity, coal tar pitch (CTP) was activated by K2CO3 and the textural and electrochemical properties of the obtained ACs were investigated. Although the CTP ACs formed by K2CO3 activation had much smaller specific surface area and pore volume than did the CTP ACs formed by KOH activation, their volumetric specific capacitance (F/cc) levels as electrode materials for EDLC were comparable due to their higher density and micro-crystallinity. Structural characterization and EDLC-electrode performance were studied with different activation conditions of CTP/K2CO3 ratio, activation temperature, and activation period.
  1. Pandolfo AG, Hollenkamp AF, J. Power Sources, 157(1), 11 (2006)
  2. Mitani S, Lee SI, Saito K, Korai Y, Mochida I, Electrochim. Acta, 51(25), 5487 (2006)
  3. Jung MJ, Jeong E, Cho S, Yeo SY, Lee YS, J. Colloid Interface Sci., 381, 152 (2012)
  4. Aida T, Murayama I, Yamada K, Morita M, J. Power Sources, 166(2), 462 (2007)
  5. Roh KC, Park JB, Lee CT, Park CW, J. Ind. Eng. Chem., 14(2), 247 (2008)
  6. Choi PR, Lee EJ, Kwon SH, Jung JC, Kim MS, J. Phys. Chem. Solids, 87, 72 (2015)
  7. Inal IIG, Holmes SM, Banford A, Aktas Z, Appl. Surf. Sci., 357, 696 (2015)
  8. Tay T, Ucar S, Karagoz S, J. Hazard. Mater., 165(1-3), 481 (2009)
  9. Ohta T, Kim IT, Egashira M, Yoshimoto N, Morita M, J. Power Sources, 198, 408 (2012)
  10. Ruch PW, Hahn M, Cericola D, Menzel A, Kotz R, Wokaun A, Carbon, 48, 1880 (2010)
  11. Deng H, Li GX, Yang HB, Tang JP, Tang JY, Chem. Eng. J., 163(3), 373 (2010)
  12. Li YT, Pi YT, Lu LM, Xu SH, Ren TZ, J. Power Sources, 299, 519 (2015)
  13. Gao Y, Yue Q, Xu S, Gao B, Mater. Lett., 146, 34 (2015)
  14. Mitani S, Lee SI, Saito K, Yoon SH, Korai Y, Mochida I, Carbon, 43, 2960 (2005)
  15. Xue YW, Yang CL, Lu YG, Rong HQ, Wang P, Pan D, New Carbon Mater., 23, 75 (2008)
  16. Tomko T, Rajagopalan R, Lanagan M, Foley HC, J. Power Sources, 196(4), 2380 (2011)
  17. Manoj B, Kunjumana AG, Int. J. Electrochem. Sci., 7, 3127 (2012)
  18. Sonibare OO, Haeger T, Foley SF, Energy, 35, 5353 (2010)
  19. Lee EJ, Kwon SH, Choi PR, Jung JC, Kim MS, Carbon Lett., 16, 78 (2015)
  20. Lee EJ, Kwon SH, Choi PR, Jung JC, Kim MS, J. Korean Oil Chem. Soc., 31, 408 (2014)
  21. Li X, Luo X, Dou L, Chen K, BioResources, 11, 2096 (2016)
  22. Hayashi J, Yamamoto N, Horikawa T, Muroyama K, Gomes VG, J. Colloid Interface Sci., 281(2), 437 (2005)
  23. Xiao H, Peng H, Deng SH, Yang XY, Zhang YZ, Li YW, Bioresour. Technol., 111, 127 (2012)
  24. Zheng C, Gao JC, Yoshio M, Qi L, Wang HY, J. Power Sources, 231, 29 (2013)
  25. Roh KC, Park JB, Lee CT, Park CW, J. Ind. Eng. Chem., 14(2), 247 (2008)
  26. Roh KC, Park JB, Park CW, J. Korean Ind. Eng. Chem., 18(6), 599 (2007)
  27. Morita M, Arizono R, Yoshimoto N, Egashira M, J. Appl. Electrochem., 44(4), 447 (2014)