화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.28, No.3, 229-236, August, 2016
Theoretical and numerical studies of die swell flow
E-mail:
This paper focuses on the theoretical and numerical predictions of die-swell flow for viscoelastic and viscoelastoplastic fluids. The theoretical results on die swell have been obtained by Tanner for a wide class of constitutive equations, including Phan-Thien Tanner (PTT), pom-pom, and general network type models. These results are compared with numerical solutions across swelling ratio, pressure drop, state of stress, and dissipation-rate for two fluid models, exponential Phan-Thien Tanner (EPTT) and Papanastasiou-Exponential Phan-Thien Tanner (Pap-EPTT). Numerically, the momentum and continuity flow equations are solved by a semi-implicit time-stepping Taylor-Galerkin/pressure-correction finite element method, whilst the constitutive equation is dealt with by a cell-vertex finite volume (cv/fv) algorithm. This hybrid scheme is performed in a coupled fashion on the nonlinear differential equation system using discrete subcell technology on a triangular tessellation. The hyperbolic aspects of the constitutive equation are addressed discretely through upwind fluctuation distribution techniques.
  1. Al-Muslimawi A, 2013, Numerical Analysis of Partial Differential Equations for Viscoelastic and Free Surface Flows, Ph D Thesis, University of Swansea.
  2. Al-Muslimawi A, Tamaddon-Jahromi HR, Webster MF, J. Non-Newton. Fluid Mech., 191, 45 (2013)
  3. Al-Muslimawi A, Tamaddon-Jahromi HR, Webster MF, Korea-Aust. Rheol. J., 25(4), 197 (2013)
  4. Al-Muslimawi A, Tamaddon-Jahromi HR, Webster MF, Appl. Rheol., 24, 34188 (2014)
  5. Belblidia F, Tamaddon-Jahromi HR, Webster MF, Walters K, Rheol. Acta, 50(4), 343 (2011)
  6. Beverly CR, Tanner RI, J. Rheol., 33, 989 (1989)
  7. Bush MB, J. Non-Newton. Fluid Mech., 34, 15 (1990)
  8. Bush MB, Milthorpe JF, Tanner RI, J. Non-Newton. Fluid Mech., 16, 37 (1984)
  9. Carter RE, Warren RC, J. Rheol., 31, 151 (1987)
  10. Chang PW, Patten TW, Finlayson BA, Comput. Fluids, 7, 285 (1979)
  11. Clermont JR, Normandin M, J. Non-Newton. Fluid Mech., 50, 193 (1993)
  12. Crochet MJ, Keunings R, J. Non-Newton. Fluid Mech., 10, 339 (1982)
  13. Ganvir V, Lele A, Thaokar R, Gautham BR, J. Non-Newton. Fluid Mech., 156(1-2), 21 (2009)
  14. Matallah H, Townsend P, Webster MF, J. Non-Newton. Fluid Mech., 75(2-3), 139 (1998)
  15. Mitsoulis E, Abdali SS, Markatos NC, J. Chem. Eng., 71, 147 (1993)
  16. Ngamaramvaranggul N, Webster MF, Int. J. Numer. Methods Fluids, 36, 539 (2001)
  17. Oishi CM, Martins FP, Tome MF, Cuminato JA, Mckee S, J. Non-Newton. Fluid Mech., 166(3-4), 165 (2011)
  18. Papanastasiou TC, J. Rheol., 31, 385 (1987)
  19. Sizaire R, Legat V, J. Non-Newton. Fluid Mech., 71(1-2), 89 (1997)
  20. Szabo P, Rallison JM, Hinch EJ, J. Non-Newton. Fluid Mech., 72(1), 73 (1997)
  21. Tanner RI, J. Polym. Sci. B: Polym. Phys., 8, 2067 (1970)
  22. Tanner RI, J. Non-Newton. Fluid Mech., 129(2), 85 (2005)
  23. Tome MF, Grossi L, Castelo A, Cuminato JA, McKee S, Walters K, J. Non-Newton. Fluid Mech., 141(2-3), 148 (2007)
  24. Wapperom P, Webster MF, J. Non-Newton. Fluid Mech., 79(2-3), 405 (1998)
  25. Webster MF, Tamaddon-Jahromi HR, Aboubacar M, Numer. Meth. Part Differ. Equ., 21, 272 (2005)