화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.27, No.4, 386-390, August, 2016
불소화 탄소나노튜브를 적용한 저에너지 소모형 축전식 탈염전극의 제조 및 특성
Preparation and Characteristics of Fluorinated Carbon Nanotube Applied Capacitive Desalination Electrode with Low Energy Consumption
E-mail:,
초록
축전식 탈염전극의 에너지 효율을 향상시키기 위하여 탄소나노튜브를 불소화 표면처리하고 이를 도전재로 적용하였다. 탄소나노튜브는 상온에서 불소와 질소의 혼합가스로 불소화 처리되었으며, 미처리 탄소나노튜브와 불소화 탄소나노튜브를 각각 활성탄소 대비 0~0.5 wt% 첨가하여 활성탄소 기반 축전식 탈염전극을 제조하였다. 불소화 탄소나노튜브는 미처리 탄소나노튜브에 비하여 전극 슬러리 및 전극 내에서 분산성이 향상된 것을 제타 전위와 전자주사현미경을 통해 확인하였다. 불소화 탄소나노튜브를 첨가한 전극은 미처리 탄소나노튜브를 첨가한 전극보다 전체적으로 높은 탈염효율을 보였으며, 에너지 소비량 역시 감소하였다. 이는 불소화 표면처리로 인한 탄소나노튜브의 분산성 향상으로 인해 축전식 탈염 전극의 저항이 감소되었기 때문이다.
The surface of carbon nanotubes (CNTs) was modified by fluorination and applied to conductive materials to improve the energy efficiency of a capacitive desalination (CDI) electrode. CNTs were fluorinated at room temperature with a mixed gas of fluorine and nitrogen, and activated carbon based CDI electrodes were then prepared by adding 0-0.5 wt% of untreated CNTs or fluorinated CNTs with respect to the activated carbon. Fluorinated CNTs showed improved dispersibility in the electrode and also slurry as compared to untreated CNTs, which was confirmed by the zeta potential and scanning electron microscopy. Fluorinated CNTs added electrodes showed higher desalination efficiency but lower energy consumption than those of using untreated CNTs added electrodes. This was attributed to the decrease in the resistance of CDI electrodes due to the improved dispersibility of CNTs by fluorination.
  1. Liu Y, Lu T, Sun Z, Chua DHC, Pan L, J. Mater. Chem. A, 3, 8693 (2015)
  2. Lee DJ, Kang MD, Lee SH, Park JS, J. Korean Electrochem. Soc., 17, 37 (2014)
  3. Oren Y, Desalination, 228(1-3), 10 (2008)
  4. Cai PF, Su CJ, Chang WT, Chang FC, Peng CY, Sun IW, Wei YL, Jou CJ, Wang HP, Mar. Pollut. Bull., 85, 733 (2014)
  5. Omosebi A, Gao X, Landon J, Liu K, Appl. Mater. Interfaces, 6, 12640 (2014)
  6. Zhang YM, Zou LD, Ladewig BP, Mulcahy D, Desalination, 362, 59 (2015)
  7. Kim TY, Analysis of influential factors on deionization capacity and rate in capacitive deionization, PhD Dissertation, Seoul National University, Seoul, Korea (2014).
  8. Kim JS, Choi JH, J. Membr. Sci., 355(1-2), 85 (2010)
  9. Li HB, Zou L, Desalination, 275(1-3), 62 (2011)
  10. Mossad M, Zou L, J. Hazard. Mater., 244-245, 387 (2013)
  11. Kim JS, Kim CS, Shin HS, Rhim JW, Macromol. Res., 23(4), 360 (2015)
  12. Lim JA, Park NS, Park JS, Choi JH, Desalination, 238(1-3), 37 (2009)
  13. Gabelich CJ, Tran TD, Environ. Sci. Technol., 36, 3010 (2002)
  14. Wang G, Dong Q, Ling Z, Pan C, Yu C, Qiu J, J. Mater. Chem., 22, 21819 (2012)
  15. Li H, Zou L, Pan L, Sun Z, Environ. Sci. Technol., 44, 8692 (2010)
  16. Wang L, Wang M, Huang ZH, Cui T, Gui X, Kang F, Wang K, Wu D, J. Mater. Chem., 21, 18295 (2011)
  17. Garcia-Quismondo E, Gomez R, Vaquero F, Cudero AL, Palma J, Anderson M, Phys. Chem. Chem. Phys., 15, 7648 (2013)
  18. Potschke P, Bhattacharyya AR, Janke A, Eur. Polym. J., 40, 137 (2004)
  19. Hecht DS, Heintz AM, Lee R, Hu L, Moore B, Cucksey C, Risser S, Nanotechnology, 22, 075201 (2011)
  20. Lee GW, Han JT, Korean Ind. Chem. News, 10(4), 8 (2007)
  21. Im JS, Park IJ, In SJ, Kim T, Lee YS, J. Fluor. Chem., 130, 1111 (2009)
  22. Im JS, Kang SC, Bai BC, Bae TS, In SJ, Jeong E, Lee SH, Lee YS, Carbon, 49, 2235 (2011)
  23. Park EJ, Bac LH, Kim JS, Kwon YS, Kim JC, Choi HS, Chung YH, J. Korean Powder Metall. Inst., 16, 217 (2009)
  24. Ha HJ, Kong YC, Do KH, Jang SP, Korean J. Air Cond. Refrig. Eng., 23, 528 (2011)
  25. Peng Z, Zhang D, Shi L, Yan T, J. Mater. Chem., 22, 6603 (2012)
  26. Dermentzis K, Ouzounis K, Electrochim. Acta, 53(24), 7123 (2008)
  27. Zhao R, Biesheuvel PM, van der Wal A, Energy Environ. Sci., 5, 9520 (2012)