화학공학소재연구정보센터
Applied Surface Science, Vol.378, 37-48, 2016
The effect of metal cluster deposition route on structure and photocatalytic activity of mono- and bimetallic nanoparticles supported on TiO2 by radiolytic method
TiO2 (P25) was modified with small and relatively monodisperse mono- and bimetallic clusters (Ag, Pd, Pt, Ag/Pd, Ag/Pt and Pd/Pt) induced by radiolysis to improve its photocatalytic activity. The as-prepared samples were characterized by X-ray fluorescence spectrometry (XRF), photoluminescence spectrometry (PL), diffuse reflectance spectroscopy (DRS), X-ray powder diffractometry (XRD), scanning transition electron microscopy (STEM) and BET surface area analysis. The effect of metal type (mono- and bimetallic modification) as well as deposition method (simultaneous or subsequent deposition of two metals) on the photocatalytic activity in toluene removal in gas phase under UV-vis irradiation (light-emitting diodes- LEDs) and phenol degradation in liquid phase under visible light irradiation (lambda > 420 nm) were investigated. The highest photoactivity under Vis light was observed for TiO2 co-loaded with platinum (0.1%) and palladium (0.1%) clusters. Simultaneous addition of metal precursors results in formation of larger metal nanoparticles (15-30 nm) on TiO2 surface and enhances the Vis-induced activity of Ag/PdTiO2 up to four times, while the subsequent metal ions addition results in formation of metal particle size ranging from 4 to 20 nm. Subsequent addition of metal precursors results in formation of BNPs (bimetallic nanoparticle) composites showing higher stability in four cycles of toluene degradation under UV-vis. Obtained results indicated that direct electron transfer from the BNPs to the conduction band of the semiconductor is responsible for visible light photoactivity, whereas superoxide radicals (such as O-2(center dot-) and center dot OOH) are responsible for pollutants degradation over metal-TiO2 composites. (C) 2016 Elsevier B.V. All rights reserved.