화학공학소재연구정보센터
Polymer(Korea), Vol.40, No.4, 635-642, July, 2016
In-situ 중합 PA12/MMT 나노복합체로 제조된 Poly(ether-b-amide)/MMT 복합체의 물성
Properties of Poly(ether-b-amide)/MMT Composites Prepared with in-situ Polymerized PA12/MMT Nanocomposites
E-mail:
초록
Polyamide12(PA12) 올리고머가 층간에 삽입된 PA12/montmorillonite(MMT) 나노복합체(M-PA)를 4,4'-methylene bis(cyclohexyl amine)과 12-aminododecanoic acid를 이용하여 in-situ 중합으로 합성하였다. 이를 poly(tetramethylene glycol) (PTMG)의 양 말단에 hexamethylene diisocyanate(HDI)로 isocyanate 작용기를 가지도록 합성한 prepolymer 와 반응시켜 M-PA 부분과 PTMG 부분이 각각 결정성의 hard segment와 soft segment를 형성하는 poly(ether-bamide)s (PEBA)/MMT 복합체(C-PEBA)를 제조하였다. 결과로서 MMT의 함량이 증가함에 따라 hard segment의 결정용융 엔탈피가 5 wt%까지 증가하다 이후 감소하였고, MMT가 단순 혼합된 같은 구조의 PEBA(B-PEBA)보다 최대신율과 강도가 증가하였으며 3 wt%일 때 최대값를 나타냈다. 영구 변형률은 MMT의 함량이 증가함에 따라 감소하였으며 특히 5 wt% 이상에서는 상업화된 PEBA인 Pebax®나 열가소성 폴리우레탄(TPU)보다 낮거나 비슷한 우수한 탄성성질을 가졌다.
PA12/montmorillonite (MMT) nanocomposites (M-PA), polyamide12 (PA12) oligomers intercalated into the crystalline layers of MMT, were synthesized by in-situ polymerization with 4,4'-methylene bis(cyclohexyl amine), 12-aminododecanoic acid, and MMT. Poly(ether-b-amide) (PEBA)/MMT nanocomposites (C-PEBA) consisting of crystalline hard segment and amorphous soft segment from M-PA block and PTMG block repectively were prepared with M-PA and isocyanate terminated poly(tetramethylene glycol) prepolymer by hexamethylene diisocyanate (HDI). As a result, the crystalline melting enthalpy increased up to 5 wt% and then decreased with increasing the MMT content. The maximum strain and strength of the C-PEBA were shown at 3 wt% of MMT content and the values were larger than those of the control PEBA (B-PEBA), simply MMT blended one. However, the permanent setting of C-PEBA decreased with increasing the MMT content, especially at more than 5 wt%, similar to or less than those of Pebax® commercialized PEBA and a typical polyurethane thermoplastic elastomer (TPU).
  1. Lee YS, Jeong JC, Park JM, Elast. Compos., 45, 245 (2010)
  2. Lan T, Pinnavaia TJ, Chem. Mater., 6, 2216 (1994)
  3. Kato C, Kuroda K, Misawa M, Clay Clay Min., 27, 129 (1979)
  4. Suguhara Y, Sugitama T, Nagayama T, Kuroda K, Kato C, J. Ceram. Soc. Jpn., 100, 413 (1992)
  5. Messersmith PB, Giannelis EP, Chem. Mater., 5, 1064 (1993)
  6. Vaia RA, Ishii H, Giannelis EP, Chem. Mater., 5, 1694 (1993)
  7. Fukushima Y, Inagaki S, Inclusion Phenom., 5, 473 (1987)
  8. Fukushima Y, Okada A, Kawasumi M, Kurauchi T, Kamigaito O, Clay Min., 23, 27 (1988)
  9. Usuki A, Kawasumi M, Kojima Y, Okada A, Kurauchi T, Kamigaito O, J. Mater. Res., 8, 1174 (1993)
  10. Lee SS, Park M, Lim S, Kim J, Hwang JT, Polym. Sci. Technol., 18(1), 8 (2007)
  11. Choi MC, Jung JY, Yeom HS, Chang YW, Polym. Eng. Sci., 53(5), 982 (2013)