화학공학소재연구정보센터
Clean Technology, Vol.22, No.2, 89-95, June, 2016
수계 내 ZnO 나노입자의 제거 및 생태독성 저감
Removal of ZnO Nanoparticles in Aqueous Phase and Its Ecotoxicity Reduction
E-mail:
초록
화장품이나 타이어에 주로 사용되는 ZnO 나노입자에 대한 나노위해성 문제가 대두되고 있다. 이에 본 연구에서는 수계상에 존재하는 ZnO 나노입자에 대한 제거 및 생물학적 독성평가를 실시하였다. 송사리(O. Latipes) 수정란을 이용한 단기 노출평가에서는 5 mg L-1에서는 일부 개체에서 기형이 관찰되었고, 10 mg L-1에서 성장지연에 의한 부화율저감이 관찰되었다. 이러한 결과를 바탕으로 ZnO 나노입자가 수생생물종에게 독성을 보인다는 것을 확인하고, 이를 제거하기 위한 방법인 침전법을 제안하였다. Na2S와 Na2HPO4를 이용하여 ZnO를 ZnS와 Zn3(PO4)2로 전환시켜 침전시켰으며, 이들의 침전에 의한 제거율은 거의 100%에 이르렀다. 또한 해당 침전물 대한 물벼룩(D. magna) 급성독성 평가에서 어떠한 독성 영향도 찾지 못하였다. 이는 ZnO의 황 및 인처리를 통한 변환이 독성 감소에 효과적이었음을 나타낸다.
The nanotoxicity of ZnO nanoparticles used in cosmetics and tire industry is one of emerged issues. Herein, the removal of ZnO nanoparticles dispersed in aqueous phase and its ecotoxicity were investigated. In the short-term exposure for fertilized eggs (O. latipes), the deformity was observed at 5 mg L-1 of ZnO nanoparticles in some individuals and delayed hatching of eggs by retarded growth was observed at 10 mg L-1 of ZnO nanoparticles. This result show that ZnO nanoparticles have cytotoxic effect to the organisms lived in water phase. Therefore, herein, the removal of ZnO nanoparticles in aqueous phase by chemical precipitation was investigated. After addition of Na2S and Na2HPO4, the precipitated ZnO was transformed to ZnS and Zn3(PO4)2 particles, respectively. The removal efficiency of ZnO was reached to almost 100% for two cases. In addition, the toxicity tests about ZnS and Zn3(PO4)2 particles showed no acute toxicity for D. magna. This implies that transformation of ZnO to ZnS and Zn3(PO4)2 particles with very low ionization constant might decrease effectively the toxicity of ZnO.
  1. Woodrow Wilson Center PEN CPI, September (2011).
  2. Li M, Zhu L, Lin D, Environ. Sci. Technol., 45, 1977 (2011)
  3. Ma R, Levard C, Judy JD, Unrine JM, Durenkamp M, Martin B, Jefferson B, Lowry GV, Environ. Sci. Technol., 48(2), 104 (2014)
  4. Den W, Huang C, Colloids Surf. A: Physicochem. Eng. Asp., 254, 81 (2005)
  5. Ma R, Levard C, Michel FM, Brown GE, Lowry GV, Environ. Sci. Technol., 47(6), 2527 (2013)
  6. Yu LP, Fang T, Xiong DW, Zhu WT, Sima XF, J. Environ. Monit, 13(7), 1975 (2011)
  7. Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A, Arch. Toxicol., 87(7), 1181 (2013)
  8. National Institute of Environmental Research, “Assessment of Environmental Exposure of Nanomaterials in Aqueous Phase,” (2014).
  9. Zhu X, Zhu L, Duan Z, Qi R, Li Y, Lang Y, J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng., 43(3), 278 (2008)
  10. Pendashte H, Shariati F, Keshavarz A, Ramzanpour Z, World J. Fish Mar. Sci., 5(5), 563 (2013)
  11. Ma H, Brennan A, Diamond SA, Environ. Toxicol. Chem., 31(7), 1621 (2012)
  12. Amiano I, Olabarrieta J, Vitorica J, Zorita S, Environ. Toxicol. Chem., 31(11), 2564 (2012)
  13. Halla S, Bradley T, Moore JT, Kuykindall T, Minella L, Nanotoxicol., 3(2), 91 (2009)
  14. Lovern SB, Klaper R, Environ. Toxicol. Chem., 25(4), 1132 (2006)
  15. Zhu X, Chang Y, Chen Y, Chemosphere, 78(3), 209 (2010)
  16. Xiong D, Fang T, Yu L, Sima X, Zhu W, Sci. Total Environ., 409(8), 1444 (2011)
  17. Zhao X, Wang S, Wu Y, You H, Lv L, Aquat Toxicol., 136-137, 49 (2013)
  18. Bessemer RA, Butler KMA, Tunnah L, Callaghan NI, Rundle A, Currie S, Dienic CA, MacCormack TJ, Nanotoxicol., 9(7), 861 (2015)
  19. Park SY, Chung J, Colman BP, Matson CW, Kim Y, Lee BC, Kim PJ, Choi K, Choi J, Environ. Toxicol. Chem., 34, 2023 (2015)
  20. Robertson L, Gaudon M, Pechev S, Demourgues A, J. Mater. Chem., 22, 3585 (2012)