화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.26, No.5, 250-257, May, 2016
염료감응 태양전지의 Pt-free 상대전극을 위한 팔면체 Co3O4/탄소나노섬유 복합체 제조
Fabrication of Octahedral Co3O4/Carbon Nanofiber Composites for Pt-Free Counter Electrode in Dye-Sensitized Solar Cells
E-mail:
Octahedral Co3O4/carbon nanofiber (CNF) composites are fabricated using electrospinning and hydrothermal methods. Their morphological characteristics, chemical bonding states, and electrochemical properties are used to demonstrate the improved photovoltaic properties of the samples. Octahedral Co3O4 grown on CNFs is based on metallic Co nanoparticles acting as seeds in the CNFs, which seeds are directly related to the high performance of DSSCs. The octahedral Co3O4/CNFs composites exhibit high photocurrent density (12.73 mA/m2), superb fill factor (62.1 %), and excellent power conversion efficiency (5.61 %) compared to those characteristics of commercial Co3O4, conventional CNFs, and metallic Co-seed/CNFs. These results can be described as stemmnig from the synergistic effect of the porous and graphitized matrix formed by catalytic graphitization using the metal cobalt catalyst on CNFs, which leads to an increase in the catalytic activity for the reduction of triiodide ions. Therefore, octahedral Co3O4/CNFs composites can be used as a counter electrode for Pt-free dye-sensitized solar cells.
  1. Gratzel M, Nature, 414, 338 (2001)
  2. Park NG, J. Korean Ind. Eng. Chem., 15(3), 265 (2004)
  3. Lin JY, Liao JH, Wei TC, Electrochem. Solid State Lett., 14(4), D41 (2011)
  4. Lan JL, Wang YY, Wan CC, Wei TC, Feng HP, Peng C, Cheng HP, Chang YH, Hsu WC, Curr. Appl. Phys., 10, S168 (2010)
  5. Yun SN, Hagfeldt A, Ma TL, Adv. Mater., 26(36), 6210 (2014)
  6. Wu MX, Lin X, Wang YD, Wang L, Guo W, Qu DD, Peng XJ, Hagfeldt A, Gratzel M, Ma TL, J. Am. Chem. Soc., 134(7), 3419 (2012)
  7. Thomas S, Deepak TG, Anjusree GS, Arun TA, Nair SV, Nair AS, J. Mater. Chem. A, 2, 4474 (2014)
  8. Murakami TN, Gratzel M, Inorg. Chim. Acta., 361, 572 (2008)
  9. Kay A, Gratzel M, Sol. Energy Mater. Sol. Cells, 44, 99 (1996)
  10. Joshi P, Xie Y, Ropp M, Galipeau D, Bailey S, Qiao Q, Energy Environ. Sci., 2, 426 (2009)
  11. Okumura T, Sugiyo T, Inoue T, Ikegami M, Miyasaka T, J. Electrochem. Soc., 160(3), H155 (2013)
  12. An H, An GH, Ahn HJ, J. Ceram. Process. Res., 16, 208 (2015)
  13. Chen M, Shao LL, Qian X, Ren TZ, Tuan ZY, J. Mater. Chem. C, 2, 10312 (2014)
  14. Tan C, Zhu G, Hojamberdiev M, Okada K, Liang J, Luo X, Liu P, Liu Y, Appl. Catal. B: Environ., 152-153, 425 (2014)
  15. Ko JW, Ryu WH, Kim ID, Park CB, Chem. Commun., 49, 9725 (2013)
  16. Ramakrishnan P, Shanmugam S, Electrochim. Acta, 125, 232 (2014)
  17. Aykut Y, ACS Appl. Mater. Interfaces, 4, 3405 (2012)
  18. An GH, Ahn HJ, J. Power Sources, 272, 828 (2014)
  19. Xiao XL, Liu XF, Zhao H, Chen DF, Liu FZ, Xiang JH, Hu ZB, Li YD, Adv. Mater., 24(42), 5762 (2012)
  20. Xiao YM, Han GY, Zhou HH, Li YP, Lin JY, Electrochim. Acta, 155, 103 (2015)
  21. Chuang HM, Li CT, Yeh MH, Lee CP, Vittal R, Ho KC, J. Mater. Chem. A, 2, 5816 (2014)
  22. Gratzel M, Inorg. Chem., 44(20), 6841 (2005)
  23. Wu JH, Li QH, Fan LQ, Lan Z, Li PJ, Lin JM, Hao SC, J. Power Sources, 181(1), 172 (2008)
  24. Gong J, Liang J, Sumathy K, Renew. Sust. Energ. Rev., 16, 5848 (2012)