화학공학소재연구정보센터
Journal of Membrane Science, Vol.510, 238-248, 2016
Superhydrophilic anti-fouling electrospun cellulose acetate membranes coated with chitin nanocrystals for water filtration
Electrospun cellulose acetate (CA) random mats were prepared and surface coated with chitin nano crystals (ChNC) to obtain water filtration membranes with tailored surface characteristics. Chitin nano crystals self-assembled on the surface of CA fibers into homogenous nanostructured networks during drying that stabilized via hydrogen bonding and formed webbed film-structures at the junctions of the electrospun fibers. Coating of CA random mats using 5% chitin nanocrystals increased the strength by 131% and stiffness by 340% accompanied by a decrease in strain. The flux through these membranes was as high as 14217 L m(-2) h(-1) at 0.5 bar. The chitin nanocrystal surface coating significantly impacted the surface properties of the membranes, producing a superhydrophilic membrane (contact angle 0) from the original hydrophobic CA mats (contact angle 132 degrees). The coated membranes also showed significant reduction in biofouling and biofilm formation as well as demonstrated improved resistance to fouling with bovine serum albumin and humic acid fouling solutions. The current approach opens up an easy, environmental friendly and efficient route to produce highly hydrophilic membranes with high water flux and low fouling for microfiltration water purification process wash water from food industry for biological contaminants. (C) 2016 Elsevier B.V. All rights reserved.