화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.54, No.3, 404-409, June, 2016
LaMnO3 비등온 합성반응의 열적특성
Thermal Characteristics of LaMnO3 Non-isothermal Synthesis Reaction
E-mail:
초록
비등온의 열중량분석기(TGA)에 의해 nitrate-citrate 혼합물의 전구체로부터 LaMnO3 합성반응의 열적특성과 반응특성을 고찰하였다. TGA의 승온속도는 5.0, 10.0, 15.0, 20.0 K/min으로 조정하였다. LaMnO3 합성반응은 승온속도의 변화에 따라 450~600 K (X=0.4~0.7)에서 빠르게 진행되었다. LaMnO3 합성반응의 활성화에너지는 Friedman, Ozawa-Flynn-Wall 그리고 Vyazovkin의 방법으로 해석하였는데, 반응전환율의 변화에 따라 23~243 kJ/g-mol 범위 값을 나타내었다. 반응차수는 승온속도와 반응전환율이 증가함에 따라 감소하였다. 반응차수의 평균값은 반응전환율이 0.1~0.3의 범위인 반응초기에는 4.5이었으며, 반응전환율이 0.7~0.9 범위인 반응의 종결 부분에서는 1.87이었다. 반응속도의 빈도인자는 승온속도와 반응전환율의 증가에 따라 점차 증가하였다. 반응속도의 빈도인자(frequency factor)는 반응전환율이 0.1~0.3인 경우에는 205.6 (min-1)이었으며 반응전환율이 0.7~0.9인 경우에는 475.2 (min-1)이었다.
Thermal Characteristics and kinetic parameters of LaMnO3 synthesis reaction were investigated by means of TGA (Thermogravimetric analysis) at non-isothermal heating conditions (5.0, 10.0, 15.0 and 20.0 K/min). The reaction was occurred rapidly at 450~600K (X=0.4~0.7) depending on the heating rate. Activation energy for the synthesis of LaMnO3 from the precursor, which was determined by different method such as Friedman, Ozawa-Flynn-Wall and Vyazovkin methods, was in the range of 23~243 kJ/g-mol depending on the fractional conversion level and estimation method. The reaction order decreased with increasing heating rate and fractional conversional level. The average reaction order was 4.50 in case of X=0.1~0.3, while it was 1.87 in case of X=0.7~0.9, respectively. The value of frequency factor of reaction rate increased with inceasing heating rate and fractional conversion level. The aveage value of frequency factor was 205.6 (min-1) when X=0.1~0.3, while it was 475.2 (min-1) when X=0.7~0.9, respectively.
  1. Badwal SPS, Foger K, Ceram. Int., 22, 257 (1996)
  2. Barsellini D, Visintin A, Triaca WE, Soriaga MP, J. Power Sources, 124(1), 309 (2003)
  3. Mancic L, Milosevic O, Marinkovic B, Loper S, Riggo F, Physica C, 341-348, 503 (2000)
  4. Chakraborty A, Devi PS, Maiti HS, Mater. Lett., 20, 63 (1994)
  5. Chakraborty A, Devi PS, Roy S, Maiti HS, J. Mater. Res., 9, 986 (1994)
  6. Kumar A, Devi PS, Sharma AD, Maiti HS, J. Am. Ceram. Soc., 88, 971 (2003)
  7. Licci F, Turilli G, Ferro P, Ciccarone A, J. Am. Ceram. Soc., 86(3), 413 (2003)
  8. Wen TL, Wang D, Chen M, Tu H, Lu Z, Zhang Z, Nie H, Huang W, Solid State Ion., 148(3-4), 513 (2002)
  9. Ji JS, Kim CH, Kang Y, Sim KS, Korean Chem. Eng. Res., 43(5), 627 (2005)
  10. Chakraborty A, Devi PS, Maiti HS, Mater. Lett., 20, 63 (1994)
  11. Chakraborty A, Devi PS, Maiti HS, J. Mater. Res., 10, 918 (1995)
  12. Friedman HL, J. Polym. Sci. C, 6, 183 (1964)
  13. Kim SJ, Lee CG, Song PS, Yun JS, Kang Y, Kim JS, Choi MJ, J. Korean Ind. Eng. Chem., 14(5), 634 (2003)
  14. Pielichowski K, Solid State Ion., 104(1-2), 123 (1997)
  15. Music S, Dragcevic S, Ivanda M, Eur. Polym. J., 43, 980 (2007)
  16. Kim UY, Son SM, Kang SH, Kang Y, Kim SD, Jung H, Korean Chem. Eng. Res., 45(6), 604 (2007)
  17. Vyazovkin S, Wight CA, Int’l. Rev. phy. Chem., 17, 407 (1998)
  18. Vyazovkin S, Wight CA, Thermochim. Acta, 340-341, 53 (1999)
  19. Park SW, Jang CH, J. Korea Society of Waste Managment., 27, 422 (2010)