화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.37, 243-250, May, 2016
The statistical optimization of bacterial cellulose production via semi-continuous operation mode
E-mail:
Bacterial cellulose (BC) is highly pure and has a higher crystallinity and molecular weight than plant cellulose. Therefore, BC can be used in many different areas such as biotechnology, pharmaceutical, cosmetics. Because of the price of BC, the productivity of BC is an important parameter for industrial scale applications. In this study, BC was produced in static culture using a semi-continuous operation mode; the conditions were optimized using response surface methodology (RSM). The collected BC was characterized by Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and tensile strength. Optimization parameters were selected as glucose concentration, surface area/volume ratio, surface area and incubation day intervals. The optimum values for incubation day intervals, volume changing ratios, glucose concentrations and surface area/volume ratios were 7 days, 66%, 50 g/L and 1.22 cm-1, respectively. BC productivity reached 0.284 g/L/day under optimal conditions, while the model equation proposed 0.289 g/L/day. RSM is essential for determining the optimum values of parameters for BC production compared with the one-variable-at-a-time method. The semi-continuous operation mode is alternative and a good candidate for the industrial scale production of BC.
  1. Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S, Nishi Y, Uryu M, J. Mater. Sci., http://dx.doi.org/10.1007/BF01139032., 24(9), 3141 (1989)
  2. Figueiredo ARP, Vilela C, Neto CP, Silvestre AJD, Freire CSR, in: Thakur VK (Ed.), Nanocellulose Polymer Nanocomposites: Fundamentals and Applications, John Wiley & Sons, Inc, Hoboken, NJ, USA, 2014, http://dx.doi.org/10.1002/9781118872246.ch2.
  3. Hu W, Chen S, Yang J, Li Z, Wang H, Carbohydr. Polym., http://dx.doi.org/10.1016/j.carbpol.2013.09.102., 101, 1043 (2014)
  4. Huang Y, Zhu C, Yang J, Nie Y, Chen C, Sun D, Cellulose, http://dx.doi.org/10.1007/s10570-013-0088-z., 21(1), 1 (2014)
  5. Klemm D, Schumann D, Udhardt U, Marsch S, Prog. Polym. Sci, http://dx.doi.org/10.1016/S0079-6700(01)00021-1., 26(9), 1561 (2001)
  6. Shi Z, Zhang Y, Phillips GO, Yang G, Food Hydrocolloids, http://dx.doi.org/10.1016/j.foodhyd.2013.07.012., 35, 539 (2014)
  7. Cheng KC, Catchmark JM, Demirci A, Biomacromolecules, 12(3), 730 (2011)
  8. Kralisch D, Hessler N, Klemm D, Erdmann R, Schmidt W, Biotechnol. Bioeng., 105(4), 740 (2009)
  9. Ross P, Mayer R, Benziman M, Microbiol. Rev., 55(1), 35 (1991)
  10. Son HJ, Kim HG, Kim KK, Kim HS, Kim YG, Lee SJ, Bioresour. Technol., http://dx.doi.org/10.1016/S0960-8524(02)00176-1., 86(3), 215 (2003)
  11. Lin SP, Calvar IL, Catchmark JM, Liu JR, Demirci A, Cheng KC, Cellulose, 20, 2191 (2013)
  12. Hu Y, Catchmark JM, Biomacromolecules, 11(7), 1727 (2010)
  13. Okiyama A, Shirae H, Kano H, Yamanaka S, Food Hydrocolloids, http://dx.doi.org/10.1016/S0268-005X(09)80032-5., 6(5), 471 (1992)
  14. Chao Y, Sugano Y, Shoda M, Appl. Microbiol. Biotechnol., http://dx.doi.org/10.1007/s002530000503., 55(6), 673 (2001)
  15. Ruka DR, Simon GP, Dean KM, Carbohydr. Polym., http://dx.doi.org/10.1016/j.carbpol.2012.03.059., 89(2), 613 (2012)
  16. Keshk SMAS, Carbohydr. Polym., http://dx.doi.org/10.1016/j.carb-pol.2013.08.060., 99, 98 (2014)
  17. Kuo CH, Teng HY, Lee CK, Biotechnol. Bioproc. E, http://dx.doi.org/10.1007/s12257-014-0316-x., 20(1), 18 (2015)
  18. Kuo CH, Chen JH, Liou BK, Lee CK, Food Hydrocolloids, http://dx.doi.org/10.1016/j.foodhyd.2014.12.034. (2015)
  19. Bailey JE, Ollis DF, Biochemical Engineering Fundamentals, second ed., McGraw-Hill, New York, 1986.
  20. Bae S, Shoda M, Biotechnol. Prog., 20(5), 1366 (2004)
  21. Huang C, Yang XY, Xiong L, Guo HJ, Luo J, Wang B, Zhang HR, Lin XQ, Chen XD, Lett. Appl. Microbiol., http://dx.doi.org/10.1111/lam.12396., 60, 491 (2015)
  22. Lin DH, Lopez-Sanchez P, Li R, Li ZX, Bioresour. Technol., http://dx.doi.org/10.1016/j.biortech.2013.10.052., 151, 113 (2014)
  23. Lin SP, Hsieh SC, Chen K, Demirci A, Cheng KC, Cellulose, http://[24], 21, 835 (2014)
  24. Cakar F, Ozer I, Aytekin AO, Sahin F, Carbohydr. Polym., http://dx.doi.org/10.1016/j.carbpol.2014.01.103., 106, 7 (2014)
  25. Bas D, Boyaci IH, J. Food Eng., http://dx.doi.org/10.1016/j.jfoodeng.2005.11.024., 78(3), 836 (2007)
  26. Khuri A, Cornell JA, Response Surfaces: Designs and Analyses, second ed., CRC Press, New York, 1996.
  27. Cheng KC, Ren M, Ogden KL, Bioresour. Technol., 128, 44 (2013)
  28. Cakar F, Katı A, Ozer I, Demirbag DD, Sahin F, Aytekin AO, Biochem. Eng. J., http://dx.doi.org/10.1016/j.bej.2014.07.002., 92, 35 (2014)
  29. Hestrin S, Schramm M, Biochem. J., 58(2), 345 (1954)
  30. Miller GL, Anal. Chem., http://dx.doi.org/10.1021/ac60147a030., 31(3), 426 (1959)
  31. Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Par WH, Youk JH, Carbohydr. Polym., http://dx.doi.org/10.1016/j.carres.2005.08.007., 340(15), 2376 (2005)
  32. Strnad J, Brinc M, Spudic V, Jelnikar N, Mirnik L, Carman B, Kravanja Z, Biotechnol. Prog., http://dx.doi.org/10.1002/btpr.390., 26(3), 653 (2010)
  33. Krystynowicz A, Czaja W, Wiktorowska-Jezierska A, Goncalves-Miskiewicz M, Turkiewicz M, Bielecki S, J. Ind. Microbiol. Biotechnol., http://dx.doi.org/10.1038/sj.jim.7000303., 29, 189 (2002)
  34. Carreira P, Mendes JAS, Trovatti E, Serafim LS, Freire CSR, Silvestre AJD, Neto CP, Bioresour. Technol., http://dx.doi.org/10.1016/j.biortech.2011.04.081., 102(15), 7354 (2011)