화학공학소재연구정보센터
Applied Surface Science, Vol.368, 332-340, 2016
Inductive effect of poly(vinyl pyrrolidone) on morphology and photocatalytic performance of Bi2WO6
Bi2WO6 has great potential applications in the field of photocatalyst due to its excellent visible-light photocatalytic performance. This work studied the detailed morphological evolution of Bi2WO6 particles synthesized in a simple hydrothermal system induced by the stabilizer poly(vinyl pyrrolidone) (PVP). The XRD and HRTEM results show PVP would not change the crystal structure of Bi2WO6, but the distribution of PVP on the initially formed Bi2WO6 nanosheets will induce the crystal growth, resulting in a distinct morphology evolution of Bi2WO6 with the increase of the concentration of PVP. At the same time, with the increase of the molecular weight of PVP, the morphology of Bi2WO6 varied from simple sheet-like (S-BWO) to some complicated morphology, such as flower-like (F-BWO), red blood cell-like (B-BWO), and square-pillar-like (SP-BWO). The photocatalytic performances of Bi2WO6 with various morphologies on the decomposition of RhB under visible light irradiation reveal that S-BWO has the best photocatalytic performance, while SP-BWO has the worst. This work not only gives the explanation of the inductive effect of PVP molecular chains on the morphological formation of Bi2WO6 particles, but also provides the controllable way to the preparation of Bi2WO6 with various morphologies taking advantage of the stabilizer PVP. (C) 2016 Elsevier B.V. All rights reserved.