화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.36, 109-115, April, 2016
Pt deposited Pt-Pd/C electrocatalysts with the enhanced oxygen reduction activity
E-mail:,
Reducing the cost of state-of-the-art Pt electrocatalysts while maintaining their oxygen reduction performance is always a hotspot in fuel cell research owing to their significant economic benefit for the commercialization of polymer electrolyte membrane fuel cells. Herein, we report a simple and cost-effective synthesis of Pt-Pd catalysts and a systematic study of their characteristics and catalytic performances for the oxygen reduction reaction (ORR). Pt-Pd bimetallic catalysts were prepared by a simple chemical deposition of Pt on the surface of Pd particles using a commercial Pd/C catalyst. During the synthesis, Pt precursor was reduced, and Pt layers were preferentially overgrown on the surface of the preexisting Pd particles resulting in Pd@Pt core-shell particles, which are favorable for ORR. By varying Pt precursors and the amount of Pt deposited, the physicochemical and electrochemical properties of the Pt?Pd catalysts were optimized. The formation of a thin Pt layer on Pd surface is more favorable, when using Pt(NH3)4Cl2·xH2O rather than H2PtCl6·xH2O. As the amount of Pt increased from 0 to 10%, the surface properties of metal particles changed to similar to that of Pt, and the resulting catalysts mainly consist of a Pt-rich layer with a Pd core such as the Pd@Pt core-shell configuration. Pt(10%)Pd/C catalyst prepared by using Pt(NH3)4Cl2·xH2O exhibited a significant improvement in the ORR with the mass activities of 221 and 53 mA/mgPGM at 0.85 and 0.9 V, respectively, which are beatable values compared to those (219 and 59 mA/mgPt at 0.85 and 0.9 V) of commercial Pt/C catalysts. The performance improvement of our bimetallic Pt-Pd/C catalysts mainly originate from the formation of an active Pt surface on the Pd core. In addition, considering that Pd is generally less expensive than Pt, these catalysts should have much better ORR performance and more feasibility of decreasing the total cost of fuel cells. In this study, the characteristics, electrochemical behaviors, and ORR performance improvements of the simply prepared Pt(x)-Pd/C core-shell catalysts were systemically investigated and are discussed.
  1. Jacobson MZ, Colella WG, Golden DM, Science, 308, 1901 (2005)
  2. Steele BCH, Heinzel A, Nature, 414, 345 (2001)
  3. Yang L, Vukmirovic MB, Su D, Sasaki K, Herron JA, Mavrikakis M, Liao S, Adzic RR, J. Phys. Chem., 117, 1748 (2013)
  4. Joo JB, Kim JS, Kim P, Yi J, Mater. Lett., 62, 3497 (2008)
  5. Joo JB, Kim P, Kim W, Kim Y, Yi J, J. Appl. Electrochem., 39(1), 135 (2009)
  6. Hwang SM, Park JH, Lim S, Jung DH, Guim H, Yoon YG, Yim SD, Kim TY, Nanoscale, 6, 12111 (2014)
  7. Joo J, Kim P, Kim W, Yi J, J. Electroceram., 17, 713 (2006)
  8. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT, Appl. Catal. B: Environ., 56(1-2), 9 (2005)
  9. Kromer MA, Joseck F, Rhodes T, Guernsey M, Marcinkoski J, Int. J. Hydrog. Energy, 34(19), 8276 (2009)
  10. Dutta I, Carpenter MK, Balogh MP, Ziegelbauer JM, Moylan TE, Atwan MH, Irish NP, J. Phys. Chem. C, 114, 16309 (2010)
  11. Mezalira DZ, Bron M, J. Power Sources, 231, 113 (2013)
  12. Yu XW, Ye SY, J. Power Sources, 172(1), 133 (2007)
  13. Ismagilov ZR, Kerzhentsev MA, Shikina NV, Lisitsyn AS, Okhlopkova LB, Barnakov CN, Sakashita M, Iijima T, Tadokoro K, Catal. Today, 102-103, 58 (2005)
  14. Mukerjee S, Srinivasan S, J. Electroanal. Chem., 357, 201 (1993)
  15. Paffett MT, Beery JG, Gottesfeld S, J. Electrochem. Soc., 135, 1431 (1988)
  16. Mukerjee S, Srinivasan S, Soriaga MP, Mcbreen J, J. Electrochem. Soc., 142(5), 1409 (1995)
  17. Stamenkovic V, Schmidt TJ, Ross PN, Markovic NM, J. Phys. Chem. B, 106(46), 11970 (2002)
  18. Chen S, Ferreira PJ, Sheng WC, Yabuuchi N, Allard LF, Shao-Horn Y, J. Am. Chem. Soc., 130(42), 13818 (2008)
  19. Joo JB, Kim YJ, Kim W, Kim ND, Kim P, Kim Y, Yi J, Korean J. Chem. Eng., 25(4), 770 (2008)
  20. Shao MH, Huang T, Liu P, Zhang J, Sasaki K, Vukmirovic MB, Adzic RR, Lett. Appl. Microbiol., 22, 10409 (2006)
  21. Koh S, Strasser P, J. Am. Chem. Soc., 129(42), 12624 (2007)
  22. Srivastava R, Mani P, Hahn N, Strasser P, Angew. Chem.-Int. Edit., 46, 8988 (2007)
  23. Yang R, Leisch J, Strasser P, Toney MF, Chem. Mater., 22, 4712 (2010)
  24. Shao M, Sasaki K, Marinkovic NS, Zhang L, Adzic RR, Electrochem. Commun., 9, 2848 (2007)
  25. Adzic RR, Zhang J, Sasaki K, Vukmirovic MB, Shao M, Wang JX, Nilekar AU, Mavrikakis M, Valerio JA, Uribe F, Top. Catal., 46, 249 (2007)
  26. Lim Y, Kim SK, Lee SC, Choi J, Nahm KS, Yoo SJ, Kim P, Nanoscale, 6, 4038 (2014)
  27. Zhang J, Mo Y, Vukmirovic MB, Klie R, Sasaki K, Adzic RR, J. Phys. Chem. B, 108(30), 10955 (2004)
  28. Zhang J, Lima FHB, Shao MH, Sasaki K, Wang JX, Hanson J, Adzic RR, J. Phys. Chem. B, 109(48), 22701 (2005)
  29. Jung DH, Bae SJ, Kim SJ, Nahm KS, Kim P, Int. J. Hydrog. Energy, 36(15), 9115 (2011)
  30. Jung D, Beak S, Nahm KS, Kim P, Korean J. Chem. Eng., 27(6), 1689 (2010)
  31. Hao X, Quach L, Korah J, Spieker WA, Regalbuto JR, J. Mol. Catal. A-Chem., 219(1), 97 (2004)
  32. Joo JB, Kim YJ, Kim W, Kim ND, Kim P, Kim Y, Lee YW, Yi J, Korean J. Chem. Eng., 25(3), 431 (2008)
  33. Joo JB, Kim P, Kim W, Yi J, Catal. Today, 131(1-4), 219 (2008)
  34. Xiao L, Zhuang L, Liu Y, Lu JT, Abruna HD, J. Am. Chem. Soc., 131(2), 602 (2009)
  35. Mani P, Srivastava R, Strasser P, J. Phys. Chem. C, 112, 2770 (2008)
  36. Sarkar A, Manthiram A, J. Phys. Chem. C, 114, 4725 (2010)