화학공학소재연구정보센터
Process Biochemistry, Vol.50, No.8, 1224-1236, 2015
Immobilization of lipase on biocompatible co-polymer of polyvinyl alcohol and chitosan for synthesis of laurate compounds in supercritical carbon dioxide using response surface methodology
Biocompatible co-polymer matrix has great importance for enzyme immobilization and subsequent bio-catalytic applications to synthesize important organic moieties. Citronellyl laurate is a fatty-acid-ester having pleasant fruity aroma and widely used as/in emulsifier, lubricant in textile, paint or ink-additives, surfactants, perfumery and food-flavouring ingredient. In present study, Burkholderia cepacia lipase (BCL) was immobilized on biodegradable co-polymer of chitosan (CHI) and polyvinyl alcohol (PVA). The synthesized bio-catalyst {PVA:CHI:BCL (6:4:2.5)} was characterized by SEM, TGA, lipase assay and protein-content analysis. This biocatalyst was applied to synthesize citronellyl laurate in supercritical carbon-dioxide (SC-CO2) using response surface methodology with five-factor-three-level Box-Behnken-design to optimize reaction parameters (citronellol: 8.5 mmol; vinyl laurate: 19.87 mmol; biocatalyst: 175.6 mg; temperature: 46.02 degrees C; pressure: 8.81 MPa) which provided 94 +/- 1.52% yield. The protocol is extended to synthesize various important 12 laurate compounds with excellent yield (90-98%) and noteworthy recyclability (upto studied 5 recycles). Interestingly, immobilized PVA/CHI/lipase biocatalyst showed 4-fold higher bio-catalytic activity than free lipase in SC-CO2. Moreover, the biocatalyst activity assessment study showed remarkable activity-stability of immobilized biocatalyst in SC-CO2 media as compared to free enzyme. Thus, present protocol demonstrated potential biocatalytic applications for synthesis of important laurate compounds with excellent recyclability in SC-CO2 as greener biocatalyst and reaction medium. (C) 2015 Elsevier Ltd. All rights reserved.