화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.27, No.2, 171-178, April, 2016
바이오매스 폐기물의 에탄올 생산 공정의 기술경제성 평가
Techno-economic Evaluation of an Ethanol Production Process for Biomass Waste
E-mail:
초록
세계 각국은 석유자원의 고갈로 인한 고유가, 지구온난화 등의 환경문제를 해결하기 위하여 많은 노력을 하고 있다. 그중 기존 화석연료를 대체할 수 있는 재생 가능한 청정 에너지원으로 바이오 연료가 주목받고 있다. 그러나 기존의 바이오연료 생산기술은 식량자원인 사탕수수, 옥수수 등을 사용하므로 이를 대체하는 기술개발이 요구되고 있다. 이에 본 연구에서는 식량자원을 대체할 폐기물의 가스화와 혼합 알코올 합성공정이 연계된 간접 알코올 전환 공정의 기술 경제성 평가를 수행하였다. 국내에서 공급되는 바이오매스 폐기물 자원량을 고려한 2000톤/일 급의 전환 공정에서 매일 533000 L의 연료용 에탄올을 생산한다고 가정하였고 이를 위해 필요한 경제성 자료는 기발표된 자료들로부터 계산되어 경제성 분석에 이용되었다. 경제성 분석은 원금회수기간과 내부수익률(internal rate of return, IRR) 및 순현재가치(Net Present Value, NPV)로 진행되었으며, 원료비용과 초기 투자비, 주요 공정비용 및 에탄올 가격 변화, 운용비 용의 민감도 분석을 진행하여 각 항목별 민감도를 고찰하였다.
Extensive efforts from all over the world have been made to solve energy problems, such as high oil prices, global warning due to the depletion of oil. Among them, biofuel has been drawing attention as a clean energy, which can replace fossil fuels. However, conventional biofuels were often converted from eatable biomass such as sugar cane, corn and soy which should be replaced with uneatable biomass. In this study, a techno-economical evaluation of the gasification of biomass waste with mixed alcohol synthesis process was performed. Considering available domestic biomass wastes, a 2000 ton/day conversion plant were assumed to produce 533000 L/day ethanol. Also, financial data from previous studies were evaluated and used and economical sensitivities with various operation conditions were established. Economic analysis were conducted by the payback period and internal rate of return (IRR) and net present value (NPV). Sensitivity analyses of raw material costs, initial investment, the major process cost, ethanol price changes and operating costs were all performed.
  1. IEA, World Energy Outlook (2012).
  2. Kook JW, Lee SH, Appl. Chem. Eng., 26(2), 178 (2015)
  3. Kook JW, Jeon SJ, Park SY, Yoo HS, Shin JH, Lee SH, J. Kor. Soc. Waste Manag., 30(5), 505 (2013)
  4. Lee AY, Koo JK, J. Kor. Org. Resour. Recycl. Assoc., 22(1), 20 (2014)
  5. Kook JW, Shin JH, Gwak IS, Lee SH, Appl. Chem. Eng., 26(2), 184 (2015)
  6. Yun Y, Coal gasification technologies: past experience and future direction in Korea, Clean Coal Day in Japan 2006, 1-20 (2006).
  7. Ra HW, Lee SH, Yoon SJ, Choi YC, Kim JH, Lee JG, Korean J. Chem. Eng., 48(2), 129 (2010)
  8. Lee SH, Yoon SJ, Choi YC, Kim JH, Lee JG, Korean J. Chem. Eng., 44(6), 631 (2006)
  9. Yoon SJ, Choi YC, Lee SH, Lee JG, Korean J. Chem. Eng., 24(3), 512 (2007)
  10. Lee SH, Choi KB, Lee JG, Kim JH, Korean J. Chem. Eng., 23(4), 576 (2006)
  11. Edreis EMA, Luo GQ, Li AJ, Chao C, Hu HY, Zhang S, Gui B, Xiao L, Xu K, Zhang PG, Yao H, Bioresour. Technol., 136, 595 (2013)
  12. Phillips S, Aden A, Jechura J, Dayton D, Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol Synthesis of Lignocellulosic Biomass Technical Report NREL/TP-510-41168 (2007).
  13. Spath, Aden P, Eggeman A, Ringer T, Wallace M, Jechura B, J, Biomass to Hydrogen Production Detailed Design and Economics Utilizing the Battelle Columbus Laboratory Indirectly-Heated Gasifier Technical Report NREL/TP-510-37408 (2005).
  14. Nexant, Inc., Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment. Task 9: Mixed Alcohols from Syngas- State of Technology, Technical Report NREL/SR-510-39947 (2006).
  15. Forzatti P, Tronconi E, Pasquon I, Catal. Rev.-Sci. Eng., 33(1-2), 109 (1991)
  16. Park JW, Bae JS, Kweon YJ, Kim HJ, Jung H, Han C, Korean Chem. Eng. Res., 47(6), 781 (2009)
  17. Bibber LV, Shuster E, Haslbeck J, Rutkowski M, Olson S, Kramer S, Technical and economic assessment of small-scale fischer-tropsch liquids facilities, DOE/NETL-2007/1253, NETL, USA (2007).
  18. NETL, Capital cost scaling methodology, DOE/NETL-341/013113, National Energy Technology Laboratory, USA (2013).
  19. http://www.tradingeconomics.com/commodity/ethanol.
  20. Lee JM, Kim DW, Kim JS, Kim JJ, Kim HS, Korean Chem. Eng. Res., 44(5), 489 (2006)