화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.26, No.1, 54-60, January, 2016
Lithium disilicate 유리의 입자크기에 따른 결정화 기구
Crystallization Mechanism of Lithium Dislicate Glass with Various Particle Sizes
E-mail:
We have investigated the crystallization mechanism of the lithium disilicate (Li2O-2SiO2, LSO) glass particles with different sizes by isothermal and non-isothermal processes. The LSO glass was fabricated by rapid quenching of melt. X-ray diffraction and differential scanning calorimetry measurements were performed. Different crystallization models of Johnson-Mehl-Avrami, modified Ozawa and Arrhenius were adopted to analyze the thermal measurements. The activation energy E and the Avrami exponent n, which describe a crystallization mechanism, were obtained for three different glass particle sizes. Values of E and n for the glass particle with size under 45 μm, 75~106 μm, and 125~150 μm, were 2.28 eV, 2.21 eV, 2.19 eV, and ~1.5 for the isothermal process, respectively. Those values for the non-isothermal process were 2.4 eV, 2.3 eV, 2.2 eV, and ~1.3, for the isothermal process, respectively. The obtained values of the crystallization parameters indicate that the crystallization occurs through the decreasing nucleation rate with a diffusion controlled growth, irrespective to the particle sizes. It is also concluded that the smaller glass particles require the higher heat absorption to be crystallized.
  1. Kawamoto T, Abe S, Phys. Rev. B, 68, 235112 (2003)
  2. Sarre G, Blanchard P, Broussely M, J. Power Sources, 127(1-2), 65 (2004)
  3. Fuss T, Ray CS, Kitamura N, Makihara M, Day DE, J. Non-Cryst. Solids, 318, 157 (2003)
  4. Yoon HW, Song CH, Yang YS, Yoon SJ, Korean J. Mater. Res., 22(2), 61 (2012)
  5. Hautojarvi P, Vehanen A, Komppa V, Pajanne E, J. Non-Cryst. Solids, 29, 365 (1978)
  6. Fernandes HR, Tulyaganov DU, Goel IK, Ferreira MF, J. Am. Ceram. Soc., 91, 11 (2008)
  7. Furusawa SI, Kasahara T, Kamiyama A, Solid State Ion., 180(6-8), 649 (2009)
  8. Du J, Corrales LR, J. Chem. Phys., 125, 114702 (2006)
  9. Gutzow I, Durschang B, Russel C, J. Mater. Sci., 32(20), 5389 (1997)
  10. Buchner S, Soares P, Pereira AS, Ferreira EB, Balzaretti NM, J. Non-Cryst. Solids, 356, 3004 (2010)
  11. Mizouchi N, Cooper A, J. Am. Ceram. Soc., 56, 320 (1973)
  12. Xu XJ, Ray CS, Day DE, J. Am. Ceram. Soc., 74, 909 (1991)
  13. Fuss T, Ray CS, Kitamura N, Makihara M, Day DE, J. Non-Cryst. Solids, 318, 157 (2003)
  14. Avrami M, J. Chem. Phys., 9, 177 (1941)
  15. Kissinger HE, J. Res. Nat. Bur. Stand., 57, 217 (1956)
  16. Henderson DW, J. Non-Cryst. Solids, 30, 301 (1979)
  17. Matusita K, Komatsu T, Yokota R, J. Mater. Sci., 19, 291 (1984)
  18. Choi HW, Kim YH, Rim YH, Yang YS, Phys. Chem. Chem. Phys., 15, 9940 (2013)
  19. Christian JW, The theory of transformations in metals and alloys, 2nd Part 1 (Pergamon Press, NY, 1975).
  20. Kim SJ, Kim JE, Rim YH, Yang YS, Solid State Commun., 131, 129 (2004)
  21. Choi HW, Yang YS, J. Therm. Anal. Calorim., 119, 2171 (2015)
  22. Kim SJ, Kim JE, Choi HW, Rim YH, Yang YS, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 113, 149 (2004)
  23. Choi HW, Rim YH, Yang YS, J. Korean Phys. Soc., 63, 2376 (2013)