화학공학소재연구정보센터
Molecular Crystals and Liquid Crystals, Vol.508, 357-366, 2009
Mechanical Deformations in Smectic-C Main-Chain Liquid-Crystalline Elastomers
A novel crosslinked smectic-C Main-Chain Liquid-Crystalline Elastomer (MCLCE) has been synthesized by polycondensation of vinyloxy-terminated mesogens, tetramethyldisiloxane and pentamethylpentaoxapentasilecane. The introduction of the functional vinyloxy group allows the synthesis of well-defined networks having low soluble content and good mechanical properties. Networks having a macroscopic uniformly ordered director and a conical distribution of the smectic layer normal with respect to the director are mechanically deformed by uniaxial and shear deformations. Under uniaxial deformations two processes were observed: parallel to the director the mechanical field directly couples to the smectic tilt angle while perpendicular to the director a reorientation process takes place. A shear deformation parallel and perpendicular to the director causes a uniform layer orientation and the network exhibits a smectic-C monodomain phase having a macroscopic uniform director and layer orientation. This process is reversible for shear deformation perpendicular and irreversible by applying the shear force parallel to the director.