화학공학소재연구정보센터
Plasma Chemistry and Plasma Processing, Vol.36, No.1, 121-149, 2016
On the Interaction of Cold Atmospheric Pressure Plasma with Surfaces of Bio-molecules and Model Polymers
We review studies of surface-interaction mechanisms for a surface microdis-charge (SMD) and an atmospheric pressure plasma jet (APPJ) with model polymers and biomolecules in our laboratory. We discuss the influence of plasma source type, operating parameters, and gaseous environments on surface modifications and biological deactivation. We focus on mild, remote conditions where the visible plasma plume does not contact the surface. For an APPJ fed with Ar, the interaction of the plasma plume with O-2 and/or N-2 gaseous environments leads to oxidation and surface-bound NOx even on materials containing neither oxygen nor nitrogen. The APPJ also modifies photo-sensitive polymers. Using optical filters, these modifications were shown to result in part from irradiation with vacuum ultraviolet (VUV) photons in a spectral range corresponding to Ar excimer emission. No VUV-induced effects were seen for the SMD source operated with O-2/N-2. SMD treatments using O-2/N-2 mixtures result in surface oxidation and nitridation. A new surface-bound species, NO3, has been measured on the polymers and biomolecules. Depending on the gas chemistry and film molecular structure, the NO3 surface concentration can reach 10 %. Both surface NO3 on plasma-treated films of lipopolysaccharide (LPS), an immune stimulating biomolecule found in bacteria such as E. coli, and overall surface oxidation correlate with LPS biological deactivation as evaluated using an enzyme-linked immunosorbent assay. Ambient humidity was studied using the SMD and was found to decrease overall surface modifications including NO3 and biodeactivation for O-2-rich conditions. Lastly, we discuss possible mechanisms and compare our results with published simulation studies.