화학공학소재연구정보센터
Langmuir, Vol.31, No.38, 10392-10401, 2015
Inverse Pickering Emulsions with Droplet Sizes below 500 nm
Inverse Pickering emulsions with droplet diameters between 180 and 450 nm, a narrow droplet size distribution, and an outstanding stability were prepared using a miniemulsion technique. Commercially available hydrophilic silica nanoparticles were used to stabilize the emulsions. They were hydrophobized in situ by the adsorption of various neutral polymeric surfactants. The influence of different parameters, such as kind and amount of surfactant as hydrophobizing agent, size and charge of the silica particles, and amount of water in the dispersed phase, as well as the kind of osmotic agent (sodium chloride and phosphate-buffered saline), on the emulsion characteristics was investigated. The systems were characterized by dynamic light scattering, transmission electron microscopy, cryo-scanning electron microscopy (cryo-SEM), thermogravimetric analysis, and semiquantitative attenuated total reflection infrared spectroscopy. Cryo-SEM shows that some silica particles are obviously rendered hydrophilic and form a three-dimensional network inside the droplets.