화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.54, No.2, 181-186, April, 2016
sPEEK 막으로 제조한 고분자전해질 연료전지(PEMFC) 막전극합체(MEA)의 특성
Characteristics of Proton Exchange Membrane Fuel Cells(PEMFC) Membrane and Electrode Assembly(MEA) Using Sulfonated Poly(ether ether ketone) Membrane
E-mail:
초록
최근에 저가의 고분자 전해질 연료전지(Proton Exchange Membrane Fuel Cells, PEMFC)용 비불소계 전해질 막 연구개발이 활발히 진행되고 있다. 본 연구에서는 sulfonated Poly(ether ether ketone)(sPEEK)막의 특성을 술폰화도, 상대습도, 단위 전지 온도에 따라 PEMFC 운전 조건에서 비교하였다. I-V 분극곡선, 수소투과도, 전기화학적 표면적, 막 저항 및 부하 전달 저항 등을 측정·분석했다. 술폰화도와 온도, 상대습도가 높을수록 성능이 높았으며, 특히 낮은 슬폰화도와 낮은 상대습도에서 이온 전도도 감소 때문에 성능이 큰 폭으로 감소함을 확인하였다.
Recently, there are many efforts focused on development of more economical non-fluorinated membranes for use in PEMFCs (Proton Exchange Membrane Fuel Cells). In this study, characteristics of sulfonated Poly(ether ether ketone) (sPEEK) were compared according to degrees of sulfonation (DS), relative humidity, cell temperatures at PEMFC operation condition. I-V polarization curve, hydrogen crossover, electrochemical surface area, membrane resistance and charge transfer resistance were measured. sPEEK membrane showed high performance at high DS, high temperature and high relative humidity, in particular, performance of sPEEK membrane decreased largely due to low ionic conductivity at low DS and low relative humidity.
  1. Williams MC, Strakey JP, Surdoval WA, J. Power Sources, 143(1-2), 191 (2005)
  2. Perry ML, Fuller TF, J. Electrochem. Soc., 149(7), S59 (2002)
  3. Wilkinson DP, St-Pierre J, in: Vielstich W, Gasteiger HA, Lamm A (Eds.). Handbook of Fuel Cell: Fundamentals Technology and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England, 611-612(2003).
  4. Wilson MS, Garzon FH, Sickafus KE, Gottesfeld S, J. Electrochem. Soc., 140, 2872 (1993)
  5. Knights SD, Colbow KM, St-Pierre J, Wilkinson DP, J. Power Sources, 127(1-2), 127 (2004)
  6. Collier A, Wang HJ, Yuan XZ, Zhang JJ, Wilkinson DP, Int. J. Hydrog. Energy, 31(13), 1838 (2006)
  7. Pozio A, Silva RF, De Francesco M, Giorgi L, Electrochim. Acta, 48(11), 1543 (2003)
  8. Park CH, Lee CH, Guiver MD, Lee YM, Prog. Polym. Sci, 36, 1443 (2011)
  9. Jeong JJ, Shin YC, Lee MS, Lee DH, Na IC, Lee H, Park KP, Korean Chem. Eng. Res., 51(5), 556 (2013)
  10. Gil M, Ji XL, Li XF, Na H, Hampsey JE, Lu YF, J. Membr. Sci., 234(1-2), 75 (2004)
  11. Zhong SL, Liu CG, Dou ZY, Li XF, Zhao CJ, Fu TZ, Na H, J. Membr. Sci., 285(1-2), 404 (2006)
  12. Xing PX, Robertson GP, Guiver MD, Mikhailenko SD, Wang KP, Kaliaguine S, J. Membr. Sci., 229(1-2), 95 (2004)
  13. Lawrence J, Yamaguchi T, J. Membr. Sci., 325(2), 633 (2008)
  14. Colicchio I, Wen F, Keul H, Simon U, Moeller M, J. Membr. Sci., 326(1), 45 (2009)
  15. Zhao CJ, Li XF, Wang Z, Dou ZY, Zhong SL, Na H, J. Membr. Sci., 280(1-2), 643 (2006)
  16. Sgreccia E, Di Vona ML, Licoccia S, Sganappa M, Casciola M, Chailan JF, Knauth P, J. Power Sources, 192(2), 353 (2009)
  17. Paik Y, Chae SA, Han OH, Hwang SY, Ha HY, Polymer, 50(12), 2664 (2009)
  18. Jiang RC, Kunz HR, Fenton JM, J. Power Sources, 150, 120 (2005)
  19. Lee H, Kim T, Sim W, Kim S, Ahn B, Lim T, Park K, Korean J. Chem. Eng., 28(2), 487 (2011)
  20. Song J, Kim S, Ahn B, Ko J, Park K, Korean Chem. Eng. Res., 51(1), 68 (2013)