화학공학소재연구정보센터
International Journal of Control, Vol.88, No.10, 2126-2142, 2015
Higher order direct model reference adaptive control with generic uniform ultimate boundedness
This paper proposes a new higher order model reference adaptive control (HO-MRAC) approach following direct adaptive control philosophy, which estimates unknown time-varying parameters. This approach leads to a Lyapunov based conventional MRAC update law, augmented by an observer type parameter predictor dynamics. The predictor dynamics are composed of a stable known part, a feedback of the parameter error and unknown higher order parameters, which are updated using a Lyapunov based adaptive design. So, this HO-MRAC can cope with rapidly changing parameters, due to estimation of their time derivatives. Moreover, for stability analysis, a Lyapunov based generic ultimate boundedness theorem is presented, which allows for a computation of separate bounds for each state vector partition. Furthermore, this theorem formulates the explicit specification of transient and ultimate bounds, reaching time on the ultimate bounds and a set of admissible initial conditions. Two challenging illustrative examples demonstrate the effectiveness of the proposed approach.