화학공학소재연구정보센터
Industrial & Engineering Chemistry Research, Vol.54, No.43, 10935-10944, 2015
Carbonation of Vegetable Oils: Influence of Mass Transfer on Reaction Kinetics
The carbonation of vegetable oils was studied by using tetra-n-butylammonium bromide (TBAB) as catalyst. Thermal stability of TBAB was studied by differential scanning calorimetry and thermogravimetric analysis, and it was demonstrated that the maximum reaction temperature should not exceed 130 degrees C. Reaction conditions were optimum at 130 degrees C, 50 bar, with 3.5% mol of catalyst. The gas-liquid mass-transfer coefficient and solubility of CO, were determined by taking into account the nonideality of the gas phase using Peng-Robinson state equations. At 130 degrees C, the CO2 solubility was found to be independent from epoxide conversion and equal to 0.57 mol.L-1, and the gas liquid mass-transfer coefficient (k(L)a) decreases with the epoxide conversion, i.e., at 0% of conversion k(L)a = 0.0249 s(-1) and at 94% of conversion k(L)a = 0.0021 s(-1).