화학공학소재연구정보센터
Applied Surface Science, Vol.357, 564-572, 2015
Fabrication and characterization of a novel hydrophobic CaCO3 grafted by hydroxylated poly(vinyl chloride) chains
The hydroxylated PVC (PVC-OH) was successfully synthesized by a suspension polymerization of vinyl chloride (VC), butyl acrylate (BA) and hydroxyethyl acrylate (HEA). Novel hydrophobic CaCO3 was then prepared by a urethane formation reaction between methylene diphenyl diisocyanate (MDI) and the OH groups both in the PVC-OH chains and on the surface of pristine CaCO3 particles. The effect of the PVC-OH content on the grafting ratio of treated CaCO3 particles was extensively investigated. Combining the result of Fourier transform infrared (FTIR) with that of water contact angle, it can be concluded that the hydrophobicity of CaCO3 had been efficiently improved by the PVC-OH segments grafted on the surface of CaCO3 particles. X-ray diffraction (XRD), thermal gravity analysis (TGA), scanning electron microscope (SEM) and transmission electron microscope (TEM) were also used to study crystalline behaviors, thermal stability and surface morphology of the modified CaCO3 particles, respectively. The change of specific surface area implying surface modification was investigated as well. (C) 2015 Elsevier B.V. All rights reserved.