화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.26, No.5, 609-614, October, 2015
인-질소 첨가제로 처리된 시험편의 연소 시에 발생하는 일산화탄소와 이산화탄소 생성
Emission of Carbon Monoxide and Carbon Dioxide Gases during Fire Tests of Specimens Treated with Phosphorus-Nitrogen Additives
E-mail:
초록
이 연구에서는 피로인산/4암모늄이온, 메틸렌피페라지노메틸-비스-포스폰산, 메틸렌피페라지노메틸-비스-포스폰산/4 암모늄이온의 화학 첨가제로 처리된 리기다 소나무의 연소독성가스의 생성을 고찰하였다. 15 wt%의 화학 첨가제 수용액으로 각각 리기다 소나무에 3회 붓칠하여 실온에서 건조시킨 후, 콘칼로리미터(ISO 5660-1)를 이용하여 연소독성 가스의 생성을 시험하였다. 그 결과, 화학 첨가제로 처리한 시험편의 1차-최대질량감소율도달시간(1st-TMLR peak)은 무처리 시험편에 비교하여 (66.7~250.0)%의 지체된 시간을 나타내었다. 반면에 첨가제로 처리한 시험편에 대한 최대일산화탄소 생성(CO peak), (0.0136~0.0178)% 및 최대이산화탄소 생성(CO2 peak), (0.04432~0.3648)%은 공시험편보다 높게 나타났다. 특별히 O2의 생성농도는 사람에게 치명적일 수 있는 수준인 15%보다는 훨씬 높으므로 그로 인한 위험성은 배제할 수 있었다. 그러나 화학 첨가제로 처리한 시험편은 처리하지 않은 시험편과 비교하여 연소-유독성을 부분적으로 증가시켰다.
This study was to investigate the production of combustion toxic gases of pinus rigida specimens treated with pyrophosphoric acid (PP)/4ammonuium ion (4NH4 +), methylenepiperazinomethyl-bis-phosphonic acid (PIPEABP) and PIPEABP/4NH4 +. Each pinus rigida plates was painted in three times with 15 wt% in the aqueous solution followed by drying the species at room temperature. Emission of combustion toxic gases was examined by the cone calorimeter (ISO 5660-1). First-time to peak mass loss rate (1st-TMLR peak) treated with chemicals was delayed upto 66.7~250.0% compared to those of untreated specimens. For test pieces treated with the chemicals, the emission of peak carbon monoxide (CO peak) values of 0.0136~0.0178% and peak carbon dioxide (CO2 peak) value of 0.04432~0.3648% were obtained, which were higher than those for the virgin plate. In particular, oxygen emission is much higher than the level of 15% which can be fatal to humans. Therefore, the resulting risk could be eliminated. However it is supposed that the combustion-toxicities were partially increased compared to those of virgin plate.
  1. White RH, Dietenberger MA, Wood Handbook: Wood as an Engineering Material, Ch.17: Fire Safety (1999).
  2. Ernst A, Zibrak JD, N. Engl. J. Med., 339(22), 1603 (1998)
  3. Thom SR, Carbon Monoxide Pathophysiology and Treatment, Physiology and Medicine of Hyperbaric Oxygen Therapy, 321-347, Philadelphia: Saunders Elsevier (2008).
  4. Beyler CL, SFPE Handbook of Fire Protection Engineering, Section 2, 114-115. Quincy Massachusetts: National Fire Protection Association (2008).
  5. Toxicology Update, J. Appl. Toxicol., 19(5), 379-386. John Wiley&Sons, Ltd. (1999).
  6. Purser DA, J. Fire. Sci., 2(1), 20 (1984)
  7. King BG, J. Ind. Hyg. Toxicol., 31(6), 365 (1949)
  8. Luft UC, Aviation Physiology: the Effects of Altitude in Handbook of Physiology, American Physiology Society, 1099-1145, Washington, DC (1965).
  9. Babrauskas V, New Technology to Reduce Fire Losses and Costs, Eds. Grayson SJ, Smith DA, Elsevier Appied Science Publisher, London, UK (1986).
  10. Hirschler MM, Thermal Decomposition and Chemical Composition, 239, ACS Symposium Series 797 (2001).
  11. Grexa O, Horvathova E, Besinova O, Lehocky P, Polym. Degrad. Stabil., 64, 529 (1999)
  12. Cischem Com, Flame Retardants, Chischem. Com. CO., Ltd. (2009).
  13. Chung YJ, Jin E, J. Korean Oil Chem. Soc., 30(1), 1 (2013)
  14. ISO 5660-1, Reaction-to-Fire Tests - Heat Release, Smoke Production and Mass Loss Rate-Part 1: Heat Release Rate (Cone Calorimeter Method), Genever (2002).
  15. Simpso WT, Drying and Control of Moisture Content and Dimensional Changes, Chap. 12, Wood Handbook-Wood as an Engineering Material, 1-21, Forest Product Laboratory U.S.D.A., Forest Service Madison, Wisconsin, U.S.A. (1987).
  16. Babrauskas V, The SFPE Handbook of Fire Protection Engineering, Fourth Ed., National Fire Protection Association, Massatusetts, U.S.A. (2008).
  17. Jin E, Chung YJ, Fire Sci. Eng., 27(6), 70 (2013)
  18. Chung YJ, Appl. Chem. Eng., 26(4), 505 (2015)
  19. Spearpoint MJ, Quintiere JG, Combust. Flame, 123(3), 308 (2000)
  20. Risholm-Sundman M, Lundgren M, Vestin E, Herder P, Holzals Roh-und Werkstoff, 56, 125 (1998)
  21. Quintire JG, Principles of Fire Behavior, Chap. 5, Cengage Learning, Delmar, U.S.A. (1998).
  22. Kimmerle G, J. Combust. Toxicol., 1, 4 (1974)
  23. Mourituz AP, Mathys Z, Gibson AG, Compos. Part A, 38(7), 1040 (2005)
  24. OHSA, Carbon Monoxide, OSHA Fact Sheet, United States National Institute for Occupational Safety and Health (2009).
  25. OHSA, Carbon Dioxide, Toxicological Review of Selected Chemicals, Final Rule on Air Comments Project, OHSA’s Comments (1989).
  26. MSHA, Carbon Monoxide, MSHA’s Occupational Illness and Injury Prevention Program Topic, U.S. Department of Labor (2015).