화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.53, No.5, 620-626, October, 2015
분무열분해법으로 제조된 SrAl2O4:Ho3+ 녹색 형광체의 발광특성
Luminescence Characterization of SrAl2O4:Ho3+ Green Phosphor Prepared by Spray Pyrolysis
E-mail:
초록
Ho3+가 도핑된 SrAl2O4 상향전환 형광체 분말을 분무열분해법으로 제조하고 활성제의 농도, 후 열처리 온도 변화에 따른 결정학적 구조와 발광 특성을 조사하였다. 또한 유기 첨가제 사용에 따른 형광체의 결정구조, 표면적 및 휘도 변화를 조사하였다. SrAl2O4:Ho3+는 Ho3+의 5F4/5S2→5I8 전이에 기인한 강한 녹색 발광을 보였다. 가장 높은 발광 강도를 보이는 Ho3+ 농도는 0.1%였고, 그 이상의 농도에서는 활성 이온간 쌍극자-쌍극자 상호 작용에 의에 농도소강이 일어나 발광 휘도는 급격히 감소하였다. 여기 광원의 전력 세기에 따른 발광 휘도 변화 관찰로부터 SrAl2O4:Ho3+의 녹색발광은 2광자가 관여된 바닥상태흡수-여기상태흡수 과정을 통해 효율적으로 일어남이 확인되었다. 합성된 분말의 주상은 단사정계이고 일부 육방정계 상이 존재하였다. 후 열처리 온도를 1000 °C에서 1350 °C로 증가시킴에 따라 SrAl2O4:Ho3+는 육방정계 상이 줄어 들면서 단상정계의 결정성이 향상되었다. 그러나 1350 °C에서도 일부 육방정계 상은 존재하였다. 구연산(CA)과 에틸렌 글리콜(EG)을 첨가해준 분무 용액으로부터 제조한 경우, 육방정계 상이 없는 순수한 단사정계 상으로 향상된 결정성을 가지는 SrAl2O4:Ho3+가 제조되었다. 또한 유기 첨가제와 함께 N,NDimethylformamide(DMF)를 분무용액에 넣어 줌으로써 형광체의 표면적을 크게 감소시킬 수 있었다. 그 결과 CA/EG/DMF를 넣고 제조한 SrAl2O4:Ho3+ 형광체는 유기 첨가물 없이 제조한 형광체에 비해 발광 휘도가 약 168% 향상되었다. 이러한 휘도 증대는 SrAl2O4:Ho3+ 형광체의 결정상이 순수해졌고, 결정성 증대와 표면 결함을 최소화시킨 결과라고 결론지었다.
Ho3+ doped SrAl2O4 upconversion phosphor powders were synthesized by spray pyrolysis, and the crystallographic properties and luminescence characteristics were examined by varying activator concentrations and heattreatment temperatures. The effect of organic additives on the crystal structure and luminescent properties was also investigated. SrAl2O4:Ho3+ powders showed intensive green emission due to the 5F4/5S2 → 5I8 transition of Ho3+. The optimal Ho3+ concentration in order to achieve the highest luminescence was 0.1%. Over this concentration, emission intensities were largely diminished via a concentration quenching due to dipole-dipole interaction between activator ions. According to the dependence of emission intensity on the pumping power of a laser diode, it was clear that the upconversion of SrAl2O4:Ho3+ occurred via the ground state absorption-excited state absorption processes involving two near-IR photons. Synthesized powders were monoclinic as a major phase, having some hexagonal phase. The increase of heat-treatment temperatures from 1000 °C to 1350 °C led to crystallinity enhancement of monoclinic phase, reducing hexagonal phase. The hexagonal phase, however, did not disappear even at 1350 °C. When both citric acid (CA) and ethylene glycol (EG) were added to the spray solution, the resulting powders had pure monoclinic phase without forming hexagonal phase, and led to largely enhancement of crystallinity. Also, N,N-Dimethylformamide (DMF) addition to the spray solution containing both CA and EG made it possible to effectively reduce the surface area of SrAl2O4:Ho3+ powders. Consequently, the SrAl2O4:Ho3+ powders prepared by using the spray solution containing CA/EG/DMF mixture as the organic additives showed about 168% improved luminescence compared to the phosphor prepared without organic additives. It was concluded that both the increased crystallinity of high-purity monoclinic phase and the decrease of surface area were attributed to the large enhancement of upconversion luminescence.
  1. Hasse M, Schafer H, Angew. Chem.-Int. Edit., 50, 5808 (2011)
  2. Li XM, Zhang F, Zhao DY, Nano Today, 8(6), 643 (2013)
  3. DaCosta MV, Doughan S, Han Y, Krull UJ, Anal. Chim. Acta, 832, 1 (2014)
  4. Sun QC, Mundoor H, Ribot JC, Singh V, Smalyukh II, Nagpal P, Nano Lett., 14, 101 (2014)
  5. Auzel F, Chem. Rev., 104(1), 139 (2004)
  6. Jiao Y, Gao X, Lu J, Chen Y, He W, Chen X, Li X, Li R, J. Alloy. Compd., 549, 245 (2013)
  7. Zeng JH, Su J, Li ZH, Yan RX, Li YD, Adv. Mater., 17(17), 2119 (2005)
  8. Wang ZY, Gu FB, Wang ZH, Han DM, Mater. Res. Bull., 53, 141 (2014)
  9. Joshi C, Rai A, Dwivedi Y, Rai SB, J. Lumines., 132, 806 (2012)
  10. Singh V, Rai VK, Al-Shamery K, Haase M, Kim SH, Appl. Phys. A-Mater. Sci. Process., 113, 747 (2013)
  11. Das S, Reddy AA, Prakash GV, Chem. Phys. Lett., 504(4-6), 206 (2011)
  12. Shin H, Ullah S, Chung K, J. Alloy. Compd., 544, 181 (2012)
  13. Clabau F, Rocquefelte X, Jobic S, Deniard P, Whangbo MH, Garcia A, Mercier TL, Chem. Mater., 17, 3904 (2005)
  14. Chen IC, Chen TM, J. Mater. Res., 16, 644 (2001)
  15. Rakov NG, Maciel GS, Appl. Phys. B-Lasers Opt., 98, 435 (2010)
  16. Kim JH, Jung KY, J. Lumines., 131, 1487 (2011)
  17. Cho JS, Lee SM, Jung KY, Kang YC, RSC Adv., 4, 43606 (2014)
  18. Jung KY, Lee HW, Kang YC, Park SB, Yang YS, Chem. Mater., 17, 2729 (2005)
  19. Jung KY, Lee HW, Jung HK, Chem. Mater., 18, 2249 (2006)
  20. Jung KY, Lee DY, Kang YC, Park SB, Korean J. Chem. Eng., 21(5), 1072 (2004)
  21. Kim MN, Jung KY, Korean Chem. Eng. Res., 49(5), 594 (2011)
  22. Henderson CMB, Taylor D, Miner. Mag., 45, 111 (1982)
  23. Wang D, Yin QG, Li YX, Wang MQ, J. Mater. Sci., 37(2), 381 (2002)
  24. Jung KY, Jung HK, J. Lumines., 130, 1970 (2010)
  25. Wang D, Yin Q, Li Y, Wang M, J. Lumines., 97, 1 (2002)