화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.26, No.4, 427-431, August, 2015
바나듐(IV) 이산화물의 수열합성 및 이의 열변색 특성
Hydrothermal Synthesis of Vanadium (IV) Dioxide and its Thermochromic Property
E-mail:
초록
본 연구에서는 열-변색 소재로 잘 알려진 이산화바나듐(VO2) 분말을 V2O5 분말과 옥살산 수화물로부터 여러 조건에서 수열합성과 하소공정을 통하여 제조하였다. 제조된 시료들의 화학적 구조, 결정구조 및 열적 특성들은 FE-SEM, XRD, XPS 및 DSC를 이용하여 분석하였다. 또한, 필름 시편들의 분광학적 및 열변색 특성은 제조된 분말 시료들을 볼밀링하여 50 nm 이하로 분산시켜 제조된 졸로부터 박막필름을 제작하여 UV-Vis-NIR 분광기를 이용하여 분석하였다. VO2 시료의 하소처리 온도를 증가시키면, 입자들의 크기가 증가함에 따라 시료의 상전이온도가 약 40 ℃에서 70 ℃로 증가하는 경향을 나타내었다.
In this study, vanadium dioxide (VO2) powder well known as a thermochromic material was prepared from V2O5 powder and oxalic acid dihydrate by hydrothermal and calcination process at various conditions. The chemical bonding and crystal structures in addition to thermal property of samples were determined using FE-SEM, XRD, XPS, and DSC. Also, spectroscopic and thermochromic properties of film samples were analyzed by UV-Vis-NIR spectroscopy after the thin film was prepared from the sol dispersed with the size of below 50 nm by the ball-milling of powder sample. With increasing the calcination temperature, the phase transition temperature of samples increased from 40 ℃ to 70 ℃ due to the increase of particle size.
  1. Huang Z, Chen S, Lv C, Huang Y, Lai J, App. Phys. Lett., 101, 191905 (2012)
  2. Nag J, Haglund RF, J. Phys. Condens. Matter, 20, 264016 (2008)
  3. Leroux C, Nihoul G, Tendeloo GV, Phys. Rev. B, 57, 5111 (1998)
  4. Maaza M, Bouziane K, Maritz J, McLachian DD, Swanepool R, Frigerio JM, Every M, Opti. Mater., 15, 41 (2000)
  5. Muraoka Y, Ueda Y, Hiroi Z, J. Phys. Chem. Solids, 63, 965 (2002)
  6. Goodenough JB, J. Solid State Chem., 3, 490 (1971)
  7. Zylbersztejn A, Mott NF, Phys. Rev. B, 11, 4383 (1975)
  8. Kiria P, Hyett G, Binions R, Adv. Mater. Lett., 1, 86 (2010)
  9. Fu GH, Polity A, Volbers N, Meyer BK, Thin Solid Films, 515(4), 2519 (2006)
  10. Binions R, Hyett G, Piccirillo C, Parkin IP, J. Mater. Chem., 17, 4652 (2007)
  11. Manning TD, Parkin IP, J. Mater. Chem., 14, 2554 (2004)
  12. Narayan J, Bhosle VM, J. Appl. Phys., 100, 103524 (2006)
  13. Wang YL, Chen XK, Li MC, Wang R, Wu G, Yang JP, Han WH, Cao SZ, Zhao LC, Surf. Coat. Technol., 201, 5344 (2007)
  14. Pavasupree S, Suzuki Y, Kitiyanan A, Pivsa-Art S, Yoshikawa S, J. Solid State Chem., 178, 2152 (2005)
  15. Zheng CM, Zhang JL, Luo GB, Ye JQ, Wu MM, J. Mater. Sci., 35(13), 3425 (2000)
  16. Peng Z, Jiang W, Liu H, J. Phys. Chem. C, 111, 1119 (2007)
  17. Lawton SA, Theby EA, J. Am. Ceram. Soc., 78, 104 (1995)
  18. Liu J, Li Q, Wang T, Yu D, Li Y, Angew. Chem.-Int. Edit., 116, 5158 (2004)
  19. Chen W, Peng J, Mai L, Qi Y, Solid State Commun., 132, 513 (2004)
  20. Kang L, Gao Y, Luo H, ACS Appl. Mater. Interface, 1, 2211 (2009)
  21. Kim HK, You H, Chiarello R, Chang HLM, Zhang TJ, Lam DJ, Phys. Rev. B, 47, 12900 (1993)
  22. Granqvist C, Thin Solid Films, 193, 730 (1990)
  23. Jorgenson GV, Lee JC, Sol. Energy Mater. Sol. Cells, 14, 205 (1986)
  24. Takahashi I, Hibino M, Kudo T, Jpn. J. Appl. Phys., 35, L438 (1996)
  25. Hanlon TJ, Coath JA, Richardson MA, Thin Solid Films, 436(2), 269 (2003)
  26. Luo Z, Wu Z, Xu X, Du M, Wang T, Jiang T, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 176, 762 (2011)
  27. Ji SD, Zhao Y, Zhang F, Jin P, J. Cryst. Growth, 312(2), 282 (2010)