화학공학소재연구정보센터
Macromolecular Research, Vol.23, No.7, 678-685, July, 2015
Crystallization behaviors and morphology of novel poly(octamethylene adipate-co -octamethylene succinate) and poly(octamethylene adipate)
E-mail:
Crystallization behaviors and morphology of novel biodegradable poly(octamethylene adipate-cooctamethylene succinate) (POAS) copolymers with different octamethylene succinate (OS) contents and their parent homopolymer poly(octamethylene adipate) (POA) were extensively investigated. Compared to POA, increasing the OS unit does not modify the crystal structures but slightly decreases the crystallinity values of POAS. The glass transition temperature values of POAS are greater than that of POA. Both the nonisothermal crystallization peak temperature and melting point temperature values of POAS decrease gradually with the increment of the OS unit. The overall isothermal melt crystallization rates of POAS decrease with increasing crystallization temperature and the OS content, while the crystallization mechanism does not change. The equilibrium melting point values of POAS are reduced with increasing the OS content, with respect to POA. The nucleation densities of POAS spherulites are reduce significantly; moreover, increasing crystallization temperature and the OS content reduces the spherulitic growth rates of POAS, relative to POA.
  1. Zeng JB, Srinivansan M, Li SL, Narayan R, Wang YZ, Ind. Eng. Chem. Res., 50(8), 4471 (2011)
  2. Zhu QY, He YS, Zeng JB, Huang Q, Wang YZ, Mater. Chem. Phys., 130(3), 943 (2011)
  3. Chen HB, Wang XL, Zeng JB, Li LL, Dong FX, Wang YZ, Ind. Eng. Chem. Res., 50(4), 2065 (2011)
  4. Zhang SP, Yang J, Liu XY, Chang JH, Cao AM, Biomacromolecules, 4(2), 437 (2003)
  5. Park JH, Jeon JY, Lee JJ, Jang Y, Varghese JK, Lee BY, Macromolecules, 46(9), 3301 (2013)
  6. Nair L, Laurencin C, Prog. Polym. Sci, 32, 762 (2007)
  7. Chandra R, Rustgi R, Prog. Polym. Sci, 23, 1273 (1998)
  8. Liang ZC, Pan PJ, Zhu B, Inoue Y, Macromolecules, 43(15), 6429 (2010)
  9. Papageorgiou GZ, Bikiaris DN, Polymer, 46(26), 12081 (2005)
  10. Zhao LF, Wang XH, Li L, Gan ZH, Polymer, 48(20), 6152 (2007)
  11. Papageorgiou GZ, Bikiaris DN, J. Polym. Sci. B: Polym. Phys., 44(3), 584 (2006)
  12. Papageorgiou GZ, Bikiaris DN, Panayiotou CG, Polymer, 52(20), 4553 (2011)
  13. Jiang L, Wolcott MP, Zhang JW, Biomacromolecules, 7(1), 199 (2006)
  14. Wang HJ, Gana ZH, Schultz JM, Yan S, Polymer, 49(9), 2342 (2008)
  15. Wu DF, Cheng YX, Feng SH, Yao Z, Zhang M, Ind. Eng. Chem. Res., 52(20), 6731 (2013)
  16. Papageorgiou GZ, Achilias DS, Nanaki S, Beslikas T, Bikiaris D, Thermochim. Acta, 511(1-2), 129 (2010)
  17. Pan P, Liang Z, Cao A, Inoue Y, ACS Appl. Mater. Interfaces, 1, 402 (2009)
  18. Tserki V, Matzinos P, Pavlidou E, Vachliotis D, Panayiotou C, Polym. Degrad. Stabil., 91, 367 (2006)
  19. Liang ZC, Pan PJ, Zhu B, Inoue Y, Polymer, 52(12), 2667 (2011)
  20. Li XY, Hong ZF, Sun J, Geng Y, Huang YJ, An HN, Ma Z, Zhao BJ, Shao CG, Fang YP, Yang CL, Li LB, J. Phys. Chem. B, 113(9), 2695 (2009)
  21. Zhou W, Wang X, Yang B, Xu Y, Zhang W, Zhang Y, Ji J, Polym. Degrad. Stabil., 98, 2177 (2013)
  22. Wang GY, Qiu ZB, Ind. Eng. Chem. Res., 51(50), 16369 (2012)
  23. Li FX, Xu XJ, Hao QH, Li QB, Yu JY, Cao AM, J. Polym. Sci. B: Polym. Phys., 44(12), 1635 (2006)
  24. Gan ZH, Abe H, Doi Y, Biomacromolecules, 1(4), 704 (2000)
  25. Ihn KJ, Yoo ES, Im SS, Macromolecules, 28(7), 2460 (1995)
  26. Liu J, Ye HM, Xu J, Guo BH, Polymer, 52(20), 4619 (2011)
  27. Gan Z, Abe H, Doi Y, Macromol. Chem. Phys., 203, 2369 (2002)
  28. Yang JJ, Pan PJ, Dong T, Inoue Y, Polymer, 51(3), 807 (2010)
  29. Meyer A, Yen KC, Li SH, Forster S, Woo EM, Ind. Eng. Chem. Res., 49(23), 12084 (2010)
  30. Qiu Z, Fujinami S, Komura M, Nakajima K, Ikehara T, Nishi T, Polym. J., 36, 642 (2004)
  31. Yang Y, Qiu Z, CrystEngComm, 13, 2408 (2011)
  32. Wu H, Qiu Z, CrystEngComm, 14, 3586 (2012)
  33. Huang C, Jiao L, Zhang J, Zeng J, Yang K, Wang Y, Polym. Chem., 3, 800 (2012)
  34. Zhai YL, Guo ST, Dong AJ, Jin FM, Xie CP, Zhang JW, Deng LD, React. Funct. Polym., 68(10), 1415 (2008)
  35. Turner-Jones A, Bunn C, Acta Cryst., 15, 105 (1962)
  36. Liu C, Jiang ZZ, Decatur J, Xie WC, Gross RA, Macromolecules, 44(6), 1471 (2011)
  37. Guo WS, Shen ZL, Guo BC, Zhang LQ, Jia DM, Polymer, 55(16), 4324 (2014)
  38. Gesti S, Casas M, Puiggali J, Eur. Polym. J., 44, 2295 (2008)
  39. Fu HY, Kulshrestha AS, Gao W, Gross RA, Baiardo M, Scandola M, Macromolecules, 36(26), 9804 (2003)
  40. Wang GL, Gao B, Ye HM, Xu J, Guo BH, J. Appl. Polym. Sci., 117(5), 2538 (2010)
  41. Avrami M, J. Chem. Phys., 8, 212 (1940)
  42. Avrami M, J. Chem. Phys., 9, 177 (1940)
  43. Wunderlich B, Macromolecular Physics, Academic Press, New York, 1976, Vol. 2.
  44. Hoffman J, Weeks J, J. Chem. Phys., 42, 4301 (1965)
  45. Hoffman J, Davis G, Lauritzen J, in Treatise on Solid State Chemistry, Hannay NB, Ed., Plenum Press, New York, 1976, Vol. 3, pp 497-614.
  46. Strobl G, Prog. Polym. Sci, 31, 398 (2006)
  47. Gan ZH, Abe H, Kurokawa H, Doi Y, Biomacromolecules, 2(2), 605 (2001)