화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.32, No.8, 1564-1569, August, 2015
Effective adsorption of phenols using nitrogen-containing porous activated carbon prepared from sunflower plates
E-mail:,
Nitrogen-containing porous carbons, the 800SP-NH3, were synthesized using sunflower plates as the major carbon source carbonized at 800 oC and activated with concentrated aqueous ammonia at the same temperature. The porous carbons were characterized by nitrogen physical adsorption-desorption, surface area analyzer, FT-IR, and SEM. The adsorption properties of the porous carbons towards phenols were also investigated by batch methods. The test results show that the average pore diameter of porous carbon is smaller than 2 nm, and nitrogen-containing chemical groups are formed on its surface. The adsorption capacity for phenol, 4-chlorophenol, and p-nitrophenol is 316.5mg/g, 330.24mg/g and 387.62mg/g due to its developed pore structure and nitrogen-containing chemical groups. The adsorption isotherm data greatly obey the Langmuir model.
  1. Beker U, Ganbold B, Dertli H, Gulbayir DD, Energy Conv. Manag., 51(2), 235 (2010)
  2. Yin JJ, Chen R, Ji YS, Zhao CD, Zhao GH, Zhang HX, Chem. Eng. J., 157(2-3), 466 (2010)
  3. Yu S, Yun HJ, Kim YH, Yi J, Appl. Catal. B: Environ., 144, 893 (2014)
  4. Zaviska F, Drogui P, Hachemi EME, Naffrechoux E, Ultrason. Sonochem., 21, 69 (2014)
  5. Hurwitz G, Pornwongthong P, Mahendra S, Hoek EMV, Chem. Eng. J., 240, 235 (2014)
  6. Seftel EM, Puscasu MC, Mertens M, Cool P, Carja G, Appl. Catal. B: Environ., 150-151, 157 (2014)
  7. Wang WM, Song J, Han X, J. Hazard. Mater., 262, 412 (2013)
  8. Carta R, Desogus F, J. Environ. Chem. Eng., 1, 1292 (2013)
  9. Ayusheev AB, Taran OP, Seryak IA, Podyacheva OY, Descorme C, Besson M, Kibis LS, Boronin AI, Romanenko AI, Ismagilov ZR, Parmon V, Appl. Catal. B: Environ., 146, 177 (2014)
  10. Zidi C, Tayeb R, Dhahbi M, J. Hazard. Mater., 194, 62 (2011)
  11. Zain NNM, Bakar NKA, Mohamad S, Saleh NM, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 118, 1121 (2014)
  12. Shen SF, Kentish SE, Stevens GW, Sep. Purif. Technol., 95, 80 (2012)
  13. Hasanoglu A, Desalination, 309, 171 (2013)
  14. Praveen P, Loh KC, J. Membr. Sci., 437, 1 (2013)
  15. Mehdi SS, Jafari SJ, Farrokhi M, Yang JK, Environ. Eng. Res., 18, 247 (2013)
  16. Larous S, Meniai AH, Energy Procedia, 18, 905 (2012)
  17. Belaib F, Meniai AH, Lehocine MB, Energy Procedia, 18, 1254 (2012)
  18. Gladysz-Plaska A, Majdan M, Pikus S, Sternik D, Chem. Eng. J., 179, 140 (2012)
  19. Qin G, Yao Y, Wei W, Zhang T, Appl. Surf. Sci., 280, 806 (2013)
  20. Pacurariu C, Mihoc G, Popa A, Muntean SG, Ianos R, Chem. Eng. J., 222, 218 (2013)
  21. Park KH, Balathanigaimani MS, Shim WG, Lee JW, Moon H, Microporous Mesoporous Mater., 127, 1 (2010)
  22. El-Naas MH, Al-Zuhair S, Abu Alhaija M, Chem. Eng. J., 162(3), 997 (2010)
  23. Rodrigues LA, da Silva MLCP, Alvarez-Mendes MO, Coutinho AD, Thim GP, Chem. Eng. J., 174(1), 49 (2011)
  24. Liu ZG, Zhang FS, Desalination, 267(1), 101 (2011)
  25. Monsalvo VM, Mohedano AF, Rodriguez JJ, Desalination, 277(1-3), 377 (2011)
  26. Rathinam A, Rao JR, Nair BU, J. Taiwan Inst. Chem. Eng., 42, 952 (2011)
  27. Kilic M, Apaydin-Varol E, Putun AE, J. Hazard. Mater., 189(1-2), 397 (2011)
  28. Shaarani FW, Hameed BH, Chem. Eng. J., 169(1-3), 180 (2011)
  29. Mourao PAM, Laginhas C, Custodio F, Nabais JMV, Carrott PJM, Carrott MMLR, Fuel Process. Technol., 92(2), 241 (2011)
  30. Chen YD, Huang MJ, Huang B, Chen XR, J. Anal. Appl. Pyrolysis, 98, 159 (2011)
  31. Zhong M, Wang Y, Yu J, Tian Y, Xu G, Particuology, 10, 35 (2012)
  32. Purnomo CW, Salim C, Hinode H, Fuel Process. Technol., 102, 132 (2012)
  33. Djilani C, Zaghdoudi R, Modarressi A, Rogalski M, Djazi F, Lallam A, Chem. Eng. J., 189-190, 203 (2012)
  34. Li DJ, Wu YS, Feng L, Zhang LQ, Bioresour. Technol., 113, 121 (2012)
  35. Karunarathne HDSS, Amarasinghe BMWPK, Energy Procedia, 34, 83 (2013)
  36. Miao Q, Tang Y, Xu J, Liu X, Xiao L, Chen Q, J. Taiwan Inst. Chem. Eng., 44, 458 (2013)
  37. Ahmed MJ, Theydan SK, J. Anal. Appl. Pyrolysis, 100, 253 (2013)
  38. Kulkarni SJ, Tapre RW, Patil SV, Sawarkar MB, Procedia Eng., 51, 300 (2013)
  39. Soudani N, Souissi-najar S, Ouederni A, Chin. J. Chem. Eng., 21(12), 1425 (2013)
  40. Han Y, Boateng AA, Qi PX, Lima IM, Chang J, J. Environ. Manage., 118, 196 (2013)
  41. Giraldo L, Moreno-Pirajan JC, J. Anal. Appl. Pyrolysis, http://dx.doi.org/10.1016/j.jaap.2013.12.007 (2014)
  42. Yun YS, Kim D, Park HH, Tak Y, Jin H, Synth. Met., 162, 2337 (2012)
  43. Pietrzak R, Fuel, 88(10), 1871 (2009)
  44. Kasnejad MH, Esfandiari A, Kaghazchi T, Asasian N, J. Taiwan Inst. Chem. Eng., 43, 736 (2012)
  45. Lu GC, Hao J, Liu L, Ma HW, Fang QF, Wu LM, Wei MQ, Zhang YH, Chin. J. Chem. Eng., 19(3), 380 (2011)
  46. Kumar S, Zafar M, Prajapati JK, Kumar S, Kannepalli S, J. Hazard. Mater., 185, 287 (2011)
  47. Beker U, Ganbold B, Dertli H, Gulbayir DD, Energy Conv. Manag., 51(2), 235 (2010)
  48. Zhang CX, Qiao QQ, Piper JDA, Huang BC, Environ. Pollut., 159, 3057 (2011)
  49. Hena S, J. Hazard. Mater., 181(1-3), 474 (2010)