화학공학소재연구정보센터
Polymer(Korea), Vol.39, No.4, 643-648, July, 2015
커플링제 및 나노실리카가 PVC/목분 복합재의 물성에 미치는 영향
Effects of Coupling Agents and Nanosilicas on the Physical Properties of PVC/Wood Flour Composites
E-mail:
초록
목분 플라스틱 복합재(WPC)는 친환경적이고 성능도 우수하기 때문에 많은 관심을 끌고 있다. 우수한 성능의 WPC를 제조하기 위해서는 소수성의 플라스틱 매트릭스와 친수성의 목분 사이의 계면결합력을 높이는 것이 가장 중요하다. 따라서 본 연구에서는 PVC 매트릭스와 목분 사이의 계면결합력을 높이기 위하여 5 종의 커플링제를 각각 사용하였고 PVC/목분 복합재의 물성 증진을 위하여 3 종의 나노실리카를 각각 첨가하여 그 효과를 살펴보았다. WPC 샘플은 용융블렌딩한 후 압축성형하여 만들었으며, UTM, 아이조드 충격시험기, DMA, TMA로 물성을 측정하였고 SEM으로 파단면의 모폴로지를 관찰하였다. 아미노실란 커플링제가 가장 우수하였으며 3 phr 첨가 시 가장 좋은 물성을 보였다. 비표면적이 작은 나노실리카가 가장 우수하였으며 3 phr 첨가 시 가장 좋은 물성을 보였다. 아미노실란 커플링제와 나노실리카를 첨가함으로써 PVC/목분 복합재의 물성이 크게 향상되었다.
Wood plastic composites (WPCs) are attracting lots of interests because they are eco-friendly and have high performance. To prepare a high performance WPC the most important thing is to improve interfacial adhesion strength between a hydrophobic plastic matrix and hydrophilic wood flour. Therefore, in this study, to improve interfacial adhesion strength between the PVC matrix and wood flour 5 types of coupling agents were used respectively and to improve the physical properties of the WPC 3 types of nanosilica were added respectively, and their effects were investigated. WPC samples were prepared by melt-blending followed by compression molding, and their physical properties were investigated by UTM, izod impact tester, DMA, and TMA and the morphology of fracture surfaces was observed by SEM. The aminosilane coupling agent was the best and its optimum content for good physical properties was 3 phr. The nanosilica with low surface area was the best, and its optimum content for good physical properties was 3 phr. The physical properties of the PVC/wood flour composites were improved considerably by adding the aminosilane and nanosilica.
  1. Schnieder MH, Wood Fiber Sci., 26, 142 (1994)
  2. Ahn SH, Kim DS, Polym.(Korea), 38(2), 129 (2014)
  3. Malucelli G, Ronchetti S, Lak N, Eur. Polym. J., 40, 159 (2003)
  4. Lee H, Kim DS, J. Appl. Polym. Sci., 111(6), 2769 (2009)
  5. Park JU, Kim JL, Kim DH, Ahn KH, Lee SJ, Cho KS, Macromol. Res., 14(3), 318 (2006)
  6. Wang H, Sheng KC, Lan T, Adl M, Qian XQ, Zhu SM, Compos. Sci. Technol., 70, 847 (2010)
  7. Ismail H, Salmah, Nasir M, Polym. Test, 20, 819 (2001)
  8. Oksman K, Clemons C, J. Appl. Polym. Sci., 67(9), 1503 (1998)
  9. Seo YW, Kim DS, Polym.(Korea), 38(3), 327 (2014)
  10. Kazayawoko M, Balatinecz JJ, Woodhams RT, Law S, J. Polym. Mater., 37, 237 (1997)
  11. Matuana LM, Woodhams RT, Balatinecz JJ, Park CB, Polym. Compos., 19, 446 (1998)
  12. Omar F, Laurent M, Compos. Sci. Technol., 68, 2073 (2008)
  13. Zhang S, Horrocks AR, Prog. Polym. Sci, 28, 1517 (2003)
  14. Youssef HA, Ismail MR, Ali MAM, Zahran AH, Polym. Compos., 29, 1057 (2008)
  15. Manias E, Touny A, Wu L, Lu V, Strawhecker K, Gilman JW, Chung TC, Polym. Mater. Sci. Eng., 82, 282 (2000)
  16. Minkova L, Peneva Y, Tashev E, Filippi S, Pracella M, Magagnini P, Polym. Test, 28, 528 (2009)
  17. Kim HS, Lee BH, Choi SW, Kim S, Kim HJ, Compos. Pt. A-Appl. Sci. Manuf., 38, 1473 (2007)
  18. Bledzki AK, Farnk O, Huque M, Polym. -Plast. Technol. Eng., 41, 435 (2002)
  19. Li TQ, Li RKY, Polym. -Plast. Technol. Eng., 40, 1 (2001)
  20. Park S, Kim DS, Polym.(Korea), 36(5), 573 (2012)
  21. Yue XP, Chen FG, Zhou XS, Bioresources, 6, 2022 (2011)
  22. Yim H, Kim DS, Polym. Adv. Technol., 23, 1441 (2012)
  23. Shah BL, Matuana LM, Heiden PA, J. Vinyl Addit. Technol., 11, 160 (2005)