화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.25, No.4, 177-182, April, 2015
전기방사법을 이용하여 제조된 Sb-Doped SnO2 투명전도막의 전기적 및 광학적 특성
Electrical and Optical Properties of Sb-Doped SnO2 Transparent Conductive Films Fabricated by Using Electrospinning
E-mail:,
Sb-doped SnO2(ATO) thin films were prepared using electrospinning. To investigate the optimum properties of the electrospun ATO thin films, the deposition numbers of the ATO nanofibers(NFs) were controlled to levels of 1, 2, 4, and 6. Together with the different levels of deposition number, the structural, chemical, morphological, electrical, and optical properties of the nanofibers were investigated. As the deposition number of the ATO NFs increased, the thickness of the ATO thin films increased and the film surfaces were gradually densified, which affected the electrical properties of the ATO thin films. 6 levels of the ATO thin film exhibited superior electrical properties due to the improved carrier concentration and Hall mobility resulting from the increased thickness and surface densification. Also, the thickness of the samples had an effect on the optical properties of the ATO thin films. The ATO thin films with 6 deposited levels displayed the lowest transmittance and highest haze. Therefore, the figure of merit(FOM) considering the electrical and optical properties showed the best value for ATO thin films with 4 deposited levels.
  1. Das R, Ray S, J. Phys. D-Appl. Phys., 36, 152 (2003)
  2. Park SK, Han JI, Kim WK, Kwak MG, Thin Solid Films, 397(1-2), 49 (2001)
  3. Hau SK, Yip HL, Zou J, Jen AY, Org. Electron., 10, 1401 (2009)
  4. Calnan S, Tiwari AN, Thin Solid Films, 518(7), 1839 (2010)
  5. Giraldi TR, Escote MT, Bernardi MIB, Bouquet V, Leite ER, Longo E, Varela JA, J. Electroceram., 13, 159 (2004)
  6. Kim KS, Yoon SY, Lee WJ, Kim KH, Surf. Coat. Technol., 138, 229 (2001)
  7. Chen F, Li N, Shen Q, Wang CB, Zhang LM, Sol. Energy Mater. Sol. Cells, 105, 153 (2012)
  8. Montero J, Guillen C, Herrero J, Sol. Energy Mater. Sol. Cells, 95(8), 2113 (2011)
  9. Woo DC, Koo CY, Ma HC, Lee HY, Trans. Electr. Electron. Mater., 13, 241 (2012)
  10. Lim JW, Jeong BY, Yoon HG, Lee SN, Kim JH, J. Nanosci. Nanotechnol., 12, 1675 (2012)
  11. Zhang DL, Tao L, Deng ZB, Zhang JB, Chen LY, Mater. Chem. Phys., 100(2-3), 275 (2006)
  12. Ramakrishna S, Fujihara K, Teo WE, Yong T, Ma Z, Ramaseshan R, Mater. Today, 9, 40 (2006)
  13. Leon-Brito N, Melendez A, Ramos I, Pinto N, Santiago-Aviles JJ, J. Phys. Conf. Ser., 61, 683 (2007)
  14. Koo BR, Ahn HJ, Ceram. Int., 40, 4375 (2014)
  15. Elangovan E, Singh MP, Ramamurthi K, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 113, 143 (2004)
  16. Her YG, Wu JY, Lin YR, Tsai SY, Appl. Phys. Lett., 89, 043115 (2006)
  17. Kao TH, Chen JY, Chiu CH, Huang CW, Wu WW, Appl. Phys. Lett., 104, 111909 (2014)
  18. Lu X, Chang Y, Xu M, Peng B, Adv. Mater. Res., 936, 439 (2014)
  19. Elangovan E, Singh MP, Ramamurthi K, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 113, 143 (2004)
  20. Jain A, Sagar P, Mehra RM, Mater. Sci-Poland, 25, 1 (2007)
  21. Jeong WJ, Park GC, Sol. Energy Mater. Sol. Cells, 65, 37 (2001)
  22. An HR, Ahn HJ, Park JW, Ceram. Int., 41, 2253 (2015)
  23. Liu J, Hains AW, Servaites JD, Ratner MA, Marks TJ, Chem. Mater., 21, 5258 (2009)