화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.27, No.2, 65-73, May, 2015
Flow patterns in 4:1 micro-contraction flows of viscoelastic fluids
E-mail:
In this paper, the flow pattern of viscoelastic fluids flowing inside a 4:1 planar contraction microchannel was investigated and quantitatively analyzed. A wide range of Weissenberg number flows of poly(ethylene oxide) solutions were observed while maintaining low Reynolds number (0.01 > Re). As the shear rate or fluid elasticity was increased, a transition from steady to unsteady flow was observed. In the steady flow region, the flow pattern was Newtonian-like, progressed to a divergent flow where the upstream flow pattern was distorted due to elasticity, and then a vortex developed at the upstream corners. The vortex, which was stable at first, fluctuated with a certain period as the Weissenberg number increased. The oscillating vortex was symmetric at first and became asymmetric with various patterns. As the elasticity increased further, the vortex randomly fluctuated without any time period. The Lyapunov exponent for the change in vortex size was positive, meaning that the flow was spatially chaotic. This paper systematically analyzed the flow patterns of the elastic fluids in the micro-contraction flow, which included; Newtonian-like flow, divergent flow, oscillating flow with symmetry, oscillating flow with asymmetry, and chaotic flow.
  1. Alves MA, Pinho FT, Oliveira PJ, AIChE J., 62, 2908 (2005)
  2. Alves MA, Poole RJ, J. Non-Newton. Fluid Mech., 144(2-3), 140 (2007)
  3. Anderson JR, Chiu DT, Wu H, Schueller OJ, Whitesides GM, Electrophoresis, 21, 27 (2000)
  4. Boger DV, Annu. Rev. Fluid Mech., 19, 157 (1987)
  5. Boger DV, Hur DU, Binnington RJ, J. Non-Newton. Fluid Mech., 20, 31 (1986)
  6. Bonn D, Meunier J, Phys. Rev. Lett., 79, 2662 (1997)
  7. Boogar RS, Gheshlaghi R, Mahdavi MA, Korean J. Chem. Eng., 30(1), 45 (2013)
  8. Cable PJ, Boger DV, AIChE J., 24, 869 (1978)
  9. Cable PJ, Boger DV, AIChE J., 24, 992 (1978)
  10. Cable PJ, Boger DV, AIChE J., 25, 152 (1979)
  11. Groisman A, Steinberg V, Europhys. Lett., 43, 165 (1998)
  12. Groisman A, Steinberg V, Nature, 405, 53 (2000)
  13. Groisman A, Steinberg V, New J. Phys., 6, 29 (2004)
  14. Gulati S, Muller SJ, Liepmann D, J. Non-Newton. Fluid Mech., 155(1-2), 51 (2008)
  15. Kwon Y, J. Rheol., 56(6), 1335 (2012)
  16. Kwon Y, Park KS, Korea-Aust. Rheol. J., 24(1), 53 (2012)
  17. Lee D, Kim Y, Ahn KH, Korea-Aust. Rheol. J., 26(3), 335 (2014)
  18. McKinley GH, Raiford WP, Brown RA, Armstrong RC, J. Fluid Mech., 223, 411 (1991)
  19. Nguyen H, Boger DV, J. Non-Newton. Fluid Mech., 5, 353 (1979)
  20. Nigen S, Walters K, J. Non-Newton. Fluid Mech., 102(2), 343 (2002)
  21. Pakdel P, McKinley GH, Phys. Rev. Lett., 77, 2459 (1996)
  22. Rodd LE, Cooper-White JJ, Boger DV, McKinley GH, J. Non-Newton. Fluid Mech., 143(2-3), 170 (2007)
  23. Rodd LE, Scott TP, Boger DV, Cooper-White JJ, McKinley GH, J. Non-Newton. Fluid Mech., 129(1), 1 (2005)
  24. Rodd LE, Scott TP, Cooper-White JJ, McKinley GH, Appl. Rheol., 15, 12 (2004)
  25. Rodd LE, Lee D, Ahn KH, Cooper-White JJ, J. Non-Newton. Fluid Mech., 165(19-20), 1189 (2010)
  26. Rosenstein MT, Collins JJ, De Luca CJ, Physica D, 65, 117 (1993)
  27. Rothstein JP, McKinley GH, J. Non-Newton. Fluid Mech., 98(1), 33 (2001)
  28. Sprott JC, 2003, Chaos and Time-series Analysis, Oxford University Press, Oxford. (2003)
  29. Stroock AD, Whitesides GM, Electrophoresis, 23, 3461 (2002)
  30. Walters K, Rawlinson DM, 1982, On some contraction flows for Boger fluids, In: Giesekus H, Hibberd MF, eds., Progress and Trends in Rheology, Steinkopff Verlag, New York, 193-198. (1982)
  31. Walters K, Webster MF, Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 199 (1982)
  32. Yesilata B, Oztekin A, Neti S, J. Non-Newton. Fluid Mech., 85(1), 35 (1999)