화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.9, No.10, 978-984, October, 1999
다원계 Zr합금에서 Sn첨가가 미세조직과 부식특성에 미치는 영향
Effects of Tin Addition on Microstructure and Corrosion of Zr-based Alloys
초록
ZrNbFeCu-xSn 합금을 진공 아크 용해법으로 제조하여 360 ? C 의 물, 400 ? C 의 수증기 및 36 0 ? C 의 70ppm LiOH 분위기에서 부식실험을 실시하였으며, 시편의 미세구조는 광학현미경, SEM 및 TEM으로 관찰하였다. 36 0 ? C 에서 210일까지 부식 실험한 결과 대부분의 합금이 천이 전 영역에서의 부식거동을 보였다. 400 ? C 경우, 초기에는 360 ? C 에서의 부식거동과 비슷한 경향을 보였으나 80일 이후부터는 천이현상이 발생하여 부식속도가 급격히 증가하는 경향을 나타내었는데, Sn량이 많을수록 보다 빠른 시간에 천이현상이 발생했다. LiOH 용액에서는 전반적으로 400 ? C 에서 보다 더 늦은 시간에 천이현상이 발생했다. 석출물은 Zr(Fe,Cu) 2 나Zr(Fe,Cu) 3 로 추정되는 성분을 가지지만, Sn의 증가에 따라 석출물의 조성이나 크기는 거의 변화가 없는 것으로 관찰되었다.
The effect of tin on microstructure and corrosion of Zr-based alloys was investigated for the ZrNbFeCu-xSn alloys manufactured by VAR(Vacuum Arc Remeltin). Corrosion tests were carried out in a static autoclave under 360oC water, 400oC steam and 360oC LiOH solution. Microstructures of alloys were analyzed by using optical microscope, SEM and TEM/EDS. In 360oC water test, most of alloys were shown pre-transition corrosion behavior until 210 days. At the early stage of corrosion it 400oC steam, the corrosion behavior was similar to that in 360oC water. The corrosion rate was accelerated after 30 days exposure in 400oC. With the tin addition, the transition of corrosion rate was accelerated. The precipitates were uniformly distributed, and the composition of precipitate is expected Zr(Fe,Cu)2 of Zr(Fe,Cu)3. The size and composition of precipitates were not influenced by the in addition.
  1. Sabol GP, Kilp GR, Balfour MG, Roboerts E, ASTM STP, 1023, 227 (1989)
  2. Pahutova M, et al., J. Nucl. Mater., 131, 20 (1985)
  3. Reschetnikov RG, Nikulina AV, Ninth International Symposium on Zirconium in the Nuclear Industry (1990)
  4. Garzarolli F, Schumann R, Steinberg E, Grade AM(ed.), Bradley ER(ed.), American Society for Testing and Materials, 709 (1994)
  5. Ruding P, Mikes-Lindback, Lethinen M, Andren B, Stiller,K.;Grade AM(ed.), Bradley ER(ed.), Tenth International Symposium in Zirconium in the Nuclear Industry, ASTM STP 1245/ American Society for Testing and Materials, pp.599, 1994 (1994)
  6. Anada H, Nomoto K, Shida Y, Grade AM(ed.), Bradley ER(ed.), Tenth International Symposium in Zirconium in the Nuclear Industry, ASTM STP 1245/ American Society for Testing and materials, pp.307, 1994 (1994)
  7. Limback M, Krammen MA, Ruding P, Pati SR, Garde AM, Proc. ANS Int. Topical Meeting on Light Water Reactor Fuel Performance, 286 (1994)
  8. Sabol GP, Leech WJ, Weiner RA, Miller RS, Proc. EPRI, Utility Workshop on PWR Fuel Corrosion (1993)
  9. Besch OA, et al., 11th Int. Symposium on Zirconium in the Nuclear Industry (1995)
  10. Hayashi H, Okubo T, Enlarged Halden Programme Group Meeting (1996)
  11. Kido T, Kanasugi K, Sugano M, Komatsu K, J. Nucl. Mater., 248, 281 (1997)
  12. The Morphology of Zirconium Films and Its Realtion to the Oxidation Kinetics, Cox B, AECL Report, AECL-3285/ AECL, 1965 (1965)
  13. Cox B, Progr. Nucl. Energy, 4, 166 (1961)
  14. Jeong YH, Baek JH, Kim SJ, Kim KH, Choi BK, Jung YH, Korean J. Mater. Res., 8(4), 368 (1998)
  15. Cox B, Advanced in Corrosion Science and Technology, 240 (1976)
  16. Waterside Corrosion of Zirconium Alloys in Nuclear Power Plant, IAEA-TECDOC-996/ 1998 (1998)
  17. Dieter GE, Mechanical Metallurgy(third ed.)/ McGraw-Hill, 1986 (1986)
  18. Kim KH, Choi BK, Baek JH, Kim SJ, Jeong YH, Korean J. Mater. Res., 9(2), 188 (1999)
  19. Northwood DO, Gillies DC, Microstructural Science, 7, 123 (1979)
  20. Ivanov OS, Grigorovitch UK, Second International Conference on Peaceful Uses of Atomic Energy, 5, 34 (1958)