화학공학소재연구정보센터
International Journal of Energy Research, Vol.39, No.3, 326-335, 2015
Holographic diffraction-through-aperture spectrum splitting for increased hybrid solar energy conversion efficiency
A holographic module is designed to split light into two spectral bands for hybrid solar energy conversion. Incoming light is either transmitted to a large subsystem receiver or diffracted through an aperture in this receiver toward a second subsystem receiver. The holographic element is simulated using rigorous diffraction and ray-tracing methods. Two applications of the design are described and simulated. A photovoltaic/thermal system with 93% optical efficiency and adjustable subsystem power output ratio is designed to address solar intermittency and provide energy storage. A photovoltaic system added to an alga biofuel operation significantly increases energy output while maintaining 92% of the original algae yield. The energy return on investment of this photovoltaic/biofuel system is 2.4x greater than that of the biofuel system alone, leading to economically viable operation. Modifications to the standard holographic lens provide additional increases in spectrum-splitting capability, optical efficiency, and energy conversion efficiency. The diffraction-through-aperture concept is demonstrated as a successful approach to spectrum splitting for hybrid solar applications. Copyright (c) 2014 John Wiley & Sons, Ltd.