화학공학소재연구정보센터
Energy and Buildings, Vol.88, 45-56, 2015
Cumulative pore volume, pore size distribution and phases percolation in porous inorganic polymer composites: Relation microstructure and effective thermal conductivity
Rice hush (R) and volcanic (P) ashes, two recycled natural wastes were used for their high amorphous silica to improve the homogeneity and structure composition of inorganic polymer pastes before the expansion with aluminum powder. The fine powders were found to be appropriate in enhancing the geopolymerization and expansion conducting to lightweight structure with pore size and pore distribution linked to the viscosity, the concentration of blowing agent, and the crystalline nature of the waste. From the Stereo optical microscope, environmental scanning microscope and the mercury intrusion porosimetry used for the characterization, it appeared that in the interval of complete percolation of the skeleton, there exists correlation between the viscosity, expansion, roundness of pores, pores size distribution. The interpretation of the microstructure of porous geopolymer in this interval allows the description of their effective thermal conductivity with the Maxwell-Eucken model and the novel effective medium theory proposed recently. (C) 2014 Elsevier B.V. All rights reserved.