화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.13, No.8, 497-502, August, 2003
Si 기판에서 원자층 화학 기상 증착법으로 제조된 Al2O3 및 ZrO2 유전 박막의 결정학적 특성 및 계면 구조 평가
Crystallographic and Interfacial Characterization of Al 2 O 3 and ZrO 2 Dielectric Films Prepared by Atomic Layer Chemical Vapor Deposition on the Si Substrate
E-mail:
Crystallographic characteristics and interfacial structures of Al 2 O 3 and ZrO 2 dielectric films prepared by atomic layer chemical vapor deposition (ALCVD) were investigated at atomic scale by high-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (EDS)/electron energy-loss spectroscopy (EELS) coupled with a field-emission transmission electron microscope. The results obtained from cross-sectional and plan-view specimens showed that the Al 2 O 3 film was crystallized by annealing at a high temperature and its crystal system might be evaluated as either cubic or tetragonal phase. Whereas the ZrO 2 film crystallized during deposition at a low temperature of ∼ 300 ? C was composed of both tetragonal and monoclinic phase. The interfacial thickness in both films was increased with the increased annealing temperature. Further, the interfacial structures of X ZrO 2 O 3 and ZrO 2 films were discussed through analyses of EDS elemental maps and EELS spectra obtained from the annealed films, respectively.
  1. Singer P, Semicond. Int., 23, 66 (2000)
  2. Baliga J, Semicond. Int., 23, 83 (2000)
  3. Higashi GS, Flemming CG, Appl. Phys. Lett., 55, 1963 (1989)
  4. Gusev EP, Copel M, Cartier E, Baumvol IJR, Krug C, Gribelyuk MA, Appl. Phys. Lett., 76, 176 (2000)
  5. Park DG, Cho HJ, Lim KY, Lim C, Yeo IS, Roh JS, Park JW, J. Appl. Phys., 89, 6275 (2001)
  6. Alers GB, Werder DJ, Chabal Y, Lu HC, Gusev EP, Garfunkel E, Gustafsson T, Urdahl RS, Appl. Phys. Lett., 73, 1517 (1998)
  7. Ikeda R, Tanaka H, Uyama H, Kobayashi S, Macromol. Rapid Commun., 19(8), 423 (1998)
  8. Shappir J, Anis A, Pinsky I, IEEE Trans. Electron Devices, 33, 442 (1986)
  9. Copel M, Gribelyuk MA, Gusev E, Appl. Phys. Lett., 76, 436 (2000)
  10. Lim KY, Park DG, Cho HJ, Kim JJ, Yang JM, Choi IS, Yeo IS, Park JW, J. Appl. Phys., 91, 414 (2002)
  11. Kang L, Jeon Y, Onishi K, Lee BH, Qi WJ, Nieh R, Gopalan S, Lee JC, VLSI Tech. Symp., 2000, 44
  12. Wilk GD, Wallace RM, Anthony JM, J. Appl. Phys., 89, 5243 (2001)
  13. Shindo D, Hiraga K, High-Resolution Electron Microscopy for Materials Science, Chapt. 1, Springer-Verlag, Tokyo (1998) (1998)
  14. Shindo D, Oikawa T, Analytical Electron Microscopy for Materials Science, Chapt. 4, Springer-Verlag, Tokyo (2002) (2002)
  15. Egerton RF, Electron Energy-Loss Specroscopy in the Electron Microscope 2nd edn., Plenum, New York (1996) (1996)
  16. Kawasaki M, Oikawa T, Ibe K, Park KH, Shiojiri M, J. Electron Microsc., 47, 335 (1998)
  17. Yang JM, Lee S, Park JC, Lee DW, Lee TK, Choi JT, Lee SY, Kawasaki, Oikawa T, J. Appl. Phys., 93, 855 (2003)
  18. Muller DA, Sorsch T, Moccio S, Baumann FH, Evans-Lutterodt K, Timp G, Nature, 399(6738), 758 (1999)
  19. Renault O, Gosset LG, Rouchon D, Ermolieff A, J. Vac. Sci. Technol. A, 20(6), 1867 (2002)
  20. Kingery WD, Introduction to Ceramics 2nd edn., John Wiley & Sons, New York (1976) (1976)
  21. Diffraction data, JCPDS file (1999) (1999)
  22. Copel M, Gribelyuk MA, Gusev EP, Appl. Phys. Lett., 76, 436 (2000)