화학공학소재연구정보센터
Polymer(Korea), Vol.39, No.2, 300-310, March, 2015
실리카 나노 입자 표면에 결합된 1차 및 2차 아미노기와 3-(Acryloyloxy)-2-hydroxypropyl Methacrylate의 마이클 부가 반응에 의해 도입되는 메타크릴레이트기의 정량적 분석
Quantitative Analysis of Grafted Methacrylate Groups by Michael Addition Reaction between Primary and Secondary Amino Groups on the Silica Nanoparticle Surface with 3-(Acryloyloxy)-2-Hydroxypropyl Methacrylate
E-mail:
초록
본 연구에서는 나노 크기의 실리카 입자 표면을 1차 및 2차 아미노기를 각각 1개씩 가지는 실란 커플링제인 N-[3-(trimethoxysilyl)propyl]ethylenediamine(TPED)으로 개질한 후, 아미노기와 마이클 부가 반응이 가능한 acrylate기를 가지는 3-(acryloyloxy)-2-hydroxypropyl methacrylate(AHM)로 표면 개질하는 연구를 수행하였다. 반응온도, 투입량 및 반응시간과 같은 반응 조건들의 변화가 실리카 표면에 도입되는 methacrylate기의 양에 미치는 영향을 연구하였다. 순수 TPED와 순수 AHM을 50 oC에서 5시간 반응시킨 액체-액체 반응에서는 TPED 1분자 당 존재하는 3개의 아미노기(N-H)들 중 약 85%가 마이클 부가 반응하지만, TPED로 개질한 실리카 표면에 결합한 TPED의 3개의 아미노기는 약 30% 정도만 반응하여 반응성이 매우 낮아짐을 확인하였다.
In this study, we modified silica nanoparticles with N-[3-(trimethoxysilyl)propyl]ethylenediamine (TPED) silane coupling agent, which has one primary and one secondary amino groups in a molecule, to introduce amino groups on the silica surface. After modification of silica, we used 3-(acryloyloxy)-2-hydroxypropyl methacrylate (AHM) to introduce methacrylate groups by Michael addition reaction. We found about 30% of N-H groups on the TPED modified silica surface reacted with acrylate groups of AHM compared to about 85% of reaction between N-H groups of pure TPED with acrylate groups of pure AHM. This lower degree of Michael addition reaction for heterogeneous reaction between N-H groups on the solid TPED modified silica and liquid AHM compared to homogeneous reaction between pure liquid TPED and pure liquid AHM may be caused by lower mobility of grafted amino groups of TPED moiety and higher steric hindrance caused by solid silica particles.
  1. Jeon YM, Kim JG, Gong MS, Korean J. Mater. Res., 16(7), 422 (2006)
  2. Vansant EF, Voort PVD, Vrancjen KC, Characterization and Chemical Modification of Silica Surface, Elsevier, Amsterdam (1995)
  3. Halvorson RH, Erickson RL, Davidson CL, Dent. Mater., 19, 327 (2003)
  4. Lee S, Ha K, Polym.(Korea), 38(2), 257 (2014)
  5. Jeon HN, Ha K, Polym.(Korea), 36(5), 668 (2012)
  6. Mather BD, Viswanathan K, Miller KM, Long TE, Prog. Polym. Sci., 31, 487 (2006)
  7. Polshettiwar V, Varma RS, Tetrahedron Lett., 48, 8735 (2007)
  8. Gelest, Inc., Silane Coupling Agents, Mossisville, PA, USA (2006)
  9. Yoo SH, Song HJ, Kim CK, Polym.(Korea), 36(6), 721 (2012)
  10. Zheng F, Tran DN, Busche BJ, Fryxell GE, Addleman RS, Zemanian TS, Aardahl CL, Ind. Eng. Chem. Res., 44(9), 3099 (2005)
  11. Ek S, Iiskola EI, Niinisto L, J. Phys. Chem. B, 108(28), 9650 (2004)
  12. Kurth DG, Bein T, Langmuir, 11(8), 3061 (1995)
  13. Matinlinna JP, Areva S, Lassila VJL, Vallittu PK, Surf. Interface Anal., 36, 1314 (2004)
  14. Marrone M, Montanari T, Busca G, Conzatti L, Costa G, Castellano M, Turturro A, J. Phys. Chem. B, 108(11), 3563 (2004)
  15. Suryanarayana D, Mittal KL, J. Appl. Polym. Sci., 29, 2039 (1984)
  16. Kramer J, Scholten A, Driessen WL, Reedijk J, Eur. J. Inorg. Chem., 6, 1488 (2002)
  17. Zhuravlev LT, Colloid Surface A, 173, 1 (2000)
  18. Martin L, Osso JO, Ricart S, Roig A, Garcia O, Sastre R, J. Mater. Chem., 18, 207 (2008)
  19. Danusso F, Ferruti P, Polymer, 11, 88 (1970)
  20. Wu DC, Liu Y, He CB, Chung TS, Goh ST, Macromolecules, 37(18), 6763 (2004)
  21. Zeynep SB, Oznur DO, Mehtap I, Duygu A, J. Polym. Sci., Part A : Polym. Chem., 49, 5042 (2001)
  22. Junsheng L, Tongwen X, Yanxun F, J. Non-Cryst. Solids, 351, 3050 (2005)
  23. Ek S, Iiskola EI, Niinisto L, Vaittinen J, Pakkanen TT, Root A, J. Phys. Chem. B, 108(31), 11454 (2004)