화학공학소재연구정보센터
Polymer(Korea), Vol.39, No.2, 287-292, March, 2015
Ethylene Glycol, 1,4-Cyclohexane Dimethanol, Isosorbide와 Terephthalic Acid로 제조되는 바이오기반 삼원공중합체의 미세구조 및 열적 특성
Microstructure and Thermal Characteristics of Bio-based Terpolymer Made from Terephthalic Acid with Ethylene Glycol, 1,4-Cyclohexane Dimethanol, and Isosorbide
E-mail:
초록
다양한 함량의 테레프탈산, 에틸렌글리콜, 1,4-싸이클로헥산 디메탄올, 이소소바이드로 구성된 일련의 바이오 기반 삼원 공중합체들의 특성을 1H NMR과 13C NMR을 이용하여 연구하였다. NMR 분석 결과 모두 랜덤한 미세 구조를 가졌고 시퀀스 분포는 이소소바이드의 함량에 따라 영향을 받았다. 시차주사열량계(DSC) 데이터로부터 유리전이온도는 주로 이소소바이드 함량이 증가함에 따라 증가하는 것을 알 수 있었다. 또한 확장된 Fox 식을 이용하여 각 성분의 함량에 따른 삼원공중합체의 유리전이 온도를 예측하고자 하였다.
Characterization of a series of bio-based terpolymers containing various amounts of ethylene glycol, 1,4-cyclohexylene dimethanol, and isosorbide units were studied by 1H NMR and 13C NMR. The NMR results revealed that they had all random microstructures and that their sequence distribution was affected by the content of isosorbide. From DSC data for the terpolymer series investigated, it was observed that the glass transition temperature increased mainly as the content of isosorbide increased. The glass transition temperatures of terpolymers were estimated from the composition by extended Fox equation.
  1. Japu C, de Ilarduya AM, Alla A, Munoz-Guerra S, Polymer, 55(10), 2294 (2014)
  2. Guo N, Hu DW, Wang H, Wang RM, Xiong YB, Polym. Bull., 70(11), 3031 (2013)
  3. Moad G, Groth A, O'Shea MS, Rosalie J, Trozer RD, Peeters G, Macromol. Symp., 202, 37 (2003)
  4. Wu TM, Chang CC, Yu TL, Polym. Phys., 19, 2515 (2000)
  5. Neill RT, McWilliams DS, U.S. Patent 20140010982 A1 (2004)
  6. Turner SR, Seymour RW, Dombroski JR, Modern Polyesters: Chemistry and Technology of Polyesters and Copolyester, Scheirs J, Long TE, Editors, John Wiley & Sons, Ltd., Chapter 7 (2003)
  7. Kelsey DR, Scardino BM, Grebowicz JS, Chuah HH, Macromolecules, 33(16), 5810 (2000)
  8. Brandenburg CJ, Hayes RA, U.S. Patent 2003020429 (2003)
  9. Quintana R, de Ilarduya AM, Alla A, Munoz-Guerra S, J. Polym. Sci. A: Polym. Chem., 49(10), 2252 (2011)
  10. Shirali H, Rafizadeh M, Taromi FA, J. Compos. Mater., 48, 301 (2014)
  11. Gonzalez-Vidal N, De Ilarduya AM, Munoz-Guerra S, J. Polym. Sci. A: Polym. Chem., 47(22), 5954 (2009)
  12. Yoon WJ, Hwang SY, Koo JM, Lee YJ, Lee SU, Im SS, Macromolecules, 46, 7219 (2013)
  13. Yoon WJ, Oh KS, Koo JM, Kim JR, Lee KJ, Im SS, Macromolecules, 46(8), 2930 (2013)
  14. Trahanovsky WS, Wang Y, Fuel. Chem. Div. Prep., 47, 368 (2002)
  15. Zhu Y, Durand M, Molinier V, Aubry JM, Green Chem., 10, 532 (2008)
  16. Quintana R, de Ilarduya AM, Alla A, Guerra SM, High Perform. Polym., 24, 24 (2012)
  17. Aerdts AM, Eersels KL, Groeninckx G, Macromolecules, 29(3), 1041 (1996)
  18. Thiem J, Lueders H, Starch/Staerke, 36, 170 (1984)
  19. Thiem J, Lueders H, Polym. Bull., 11, 365 (1984)
  20. Braun D, Bergmann M, J. Fur Praktische Chemie-chemikerzeitung, 334, 298 (1992)
  21. Storbeck R, Rehahn M, Ballauff M, Makromol. Chem., 194, 53 (1993)
  22. Kricheldorf HR, Behnken G, Sell M, J. Macromol. Sci., Part A: Pure Appl. Chem., 44, 679 (2007)