화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.26, No.1, 67-73, February, 2015
테일러 반응기의 유동특성과 입자 체류시간에 관한 수치적 연구
Numerical Studies of Flow Characteristics and Particle Residence Time in a Taylor Reactor
E-mail:
초록
전산유체해석 기법을 이용하여, 테일러 반응기 내 유동특성과 입자의 체류시간에 대하여 연구하였다. 테일러 반응기는 반응기의 작동조건에 따라 내부 유동특성이 달라지므로, 입구주입속도와 반응기 회전속도 변화에 따른 테일러 반응기내부의 유동특성 변화를 살펴보았다. 또한 테일러 와류(TVF)영역에서 리튬이온전지의 양극물질인 NMC입자의 반응기내 체류시간을 측정하였다. 입구에서의 복잡한 화학반응은 고려하지 않았고 테일러 유동의 영향만 고찰하였다. 해석결과 반응기의 회전속도가 높고 반응물의 주입속도가 낮을수록 입자의 체류시간이 길어지는 것을 확인하였다.
Using a computational fluid dynamics technique, the flow characteristics and particle residence time in a Taylor reactor were studied. Since flow characteristics in a Taylor reactor are dependent on the operating conditions, effects of the inlet flow velocity and reactor rotational speed were investigated. In addition, the particle residence time of LiNiMnCoO2 (NMC), which is a cathode material in lithium-ion battery, is estimated in the Taylor vortex flow (TVF) region. Without considering the complex chemical reaction at the inlet, the effect of Taylor flow was studied. The results show that the particle residence time increases as the rotating speed increased and the flow rate decreased.
  1. Davis M, Weber E, J. Ind. Eng. Chem., 52, 929 (1960)
  2. Wereley ST, Lueptow RM, J. Fluid Mech., 364, 59 (1998)
  3. Coles D, J. Fluid Mech., 21, 385 (1965)
  4. Koschmieder EL, Benard cells and Taylor vortices, Cambridge University Press, 219-225 (1993)
  5. Andereck CD, Liu S, Swinney HL, J. Fluid Mech., 164, 155 (1986)
  6. Buhler K, Polifke N, Dynamical behaviour of Taylor vortices with superimposed axial flow. Nonlinear Evolution of Spatio-Temporal Structures in Dissipative Continuous Systems, Springer, 21-29 (1990)
  7. Lueptow RM, Docter A, Min K, Phys. Fluids A., 4, 2446 (1992)
  8. Chandrasekhar S, Proc. R. Soc. Lond. A., 265, 188 (1962)
  9. Wang J, White WB, Adair JH, Synthesis of Calcium Carbonate Particles in Octylamine/Water Bilayer Systems, J. KONA Powder and Particle, Doi:10.14356/kona.2014005.
  10. Jung WM, Kang SH, Kim WS, Choi CK, Chem. Eng. Sci., 55(4), 733 (2000)
  11. Kim WS, J. Chem. Eng. Jpn., 47(2), 115 (2014)
  12. Rochex A, Godon JJ, Bernet N, Escudie R, Water Res., 42, 4915 (2008)
  13. Jung MC, Weber SG, Anal. Chem., 77, 974 (2005)
  14. Choi M, Ham G, Jin BS, Lee SM, Lee YM, Wang G, Kim HS, J. Alloy. Compd., 608, 110 (2014)
  15. Lu Z, MacNeil D, Dahn J, Electrochem. Solid St., 4, 200 (2001)
  16. Fluent Inc., FLUENT 14.5 user’s guide (2012)
  17. Ebner M, Geldmacher F, Marone F, Stampanoni M, Wood V, Adv. Energy Mater., 3, 845 (2013)
  18. Azizov ND, Akhundov TS, High Temp+., 38, 203 (2000)