화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.26, No.1, 47-52, February, 2015
그래핀 옥사이드가 탄소나노튜브기반 바이오센서 전극의 포도당 산화효소 담지능 및 민감도에 미치는 영향
Effects of the Graphene Oxide on Glucose Oxidase Immobilization Capabilities and Sensitivities of Carbon Nanotube-based Glucose Biosensor Electrodes
E-mail:
초록
본 연구에서는 다중벽탄소나노튜브(multi-walled carbon nanotube, MWCNTs) 기반 바이오센서 전극의 포도당 산화효소 (glucose oxidase, GOD) 담지능을 높여 그 민감도를 개선하고자 그래핀 옥사이드(graphene oxide, GO)를 첨가하여 전극을 제조하였다. GO 첨가로 인하여 MWCNTs의 분산뿐만 아니라 전극의 친수성 및 표면에너지가 증가하였다. 또한, MWNCTs 0.05 g에 GO 0.05 g를 첨가하였을 때 Km (Michaelis-Menten constant)이 0.105로 가장 높은 값을 나타냈음에도 불구하고 GOD 담지능이 높아졌으며, 민감도가 121 μA mM-1까지 향상됨을 알 수 있었다. 이러한 실험 결과는 GO첨가에 의한 MWCNTs의 분산 안정성 향상, MWCNTs 전극 표면에서 친수성으로 개질 및 표면 자유에너지 증가가 GOD 담지능에 영향을 미친 것으로 사료된다.
To improve both the GOD immobilization capability and sensitivity of MWCNTs-based biosensor electrode, the electrode was prepared by adding different quantities of GO. The addition of GO increased hydrophilicity and the surface free energy of electrodes for glucose sensing as well as the dispersion of MWCNTs. In addition, the GOD immobilization capability was enhanced and the sensitivity was improved up to 121 μA mM-1 even though having a high Km value (0.105) when adding 0.05 g GO to 0.05 g MWCNTs. These experimental results were attributed to the fact that the improvement in dispersion stability for MWCNTs, hydrophilicity, and surface free energy of electrode surface due to the addition of GO affected GOD immobilization capability.
  1. Deng H, Teo AKL, Gao Z, Sens. Actuators B, 191, 522 (2014)
  2. Ryckeboer E, Bockstaele R, Vanslembrouck M, Baets R, Biomed. Opt. Express, 5, 1636 (2014)
  3. Moyo M, Okonkwo JO, Agyei NM, Enzyme Microb. Technol., 56, 28 (2014)
  4. Keihan AH, Sajjadi S, Sheibani N, Moosavi-Movahedi AA, Sens. Actuators B, 204, 694 (2014)
  5. Yang K, Zhang CY, Biosens. Bioelectron., 28, 257 (2011)
  6. Yu HR, Kim JG, Im JS, Bae TS, Lee YS, J. Ind. Eng. Chem., 18(2), 674 (2012)
  7. Fu G, Yue X, Dai Z, Biosens. Bioelectron., 26, 3973 (2011)
  8. Nenkova R, Ivanova D, Vladimirova J, Godjevargova T, Sens. Actuators B, 148, 59 (2010)
  9. Hecht DS, Hu LB, Irvin G, Adv. Mater., 23(13), 1482 (2011)
  10. Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS, Chem. Rev., 112(11), 6156 (2012)
  11. Dreyer DR, Park S, Bielawski CW, Ruoff RS, Chem. Soc. Rev., 39, 228 (2010)
  12. Zhu YW, Murali S, Cai WW, Li XS, Suk JW, Potts JR, Ruoff RS, Adv. Mater., 22(35), 3906 (2010)
  13. Tian HC, Liu JQ, Wei DX, Biomaterials, 35, 2120 (2014)
  14. Gao Y, Yip HL, Chen KS, O'Malley KM, Acton O, Sun Y, Ting G, Chen HZ, Jen AKY, Adv. Mater., 23(16), 1903 (2011)
  15. Wei HG, Zhu JH, Wu SJ, Wei SY, Guo ZH, Polymer, 54(7), 1820 (2013)
  16. Sablok K, Bhalla V, Sharma P, Kaushal R, Chaudhary S, Suri CR, J. Hazard. Mater., 248, 322 (2013)
  17. Unnikrishnan B, Palanisamy S, Chen SM, Biosens. Bioelectron., 39, 70 (2013)
  18. Sridevi S, Vasu KS, Jayaraman N, Asokan S, Sood AK, Sens. Actuators B, 195, 150 (2014)
  19. Park MS, Yun KJ, Lee YS, Appl. Chem. Eng., 25(6), 613 (2014)
  20. Kim DY, In SJ, Lee YS, Polymer (Korea), 37, 316 (2012)
  21. Joseph Wang, Analytical electrochemistry 3rd, John Wiley & Sons Inc. (2006)
  22. Yue L, Pircheraghi G, Monemian SA, Manas-Zloczower I, Carbon, 78, 268 (2014)
  23. Aboutalebi SH, Chidembo AT, Salari M, Konstantinov K, Wexler D, Liua HK, Dou SX, Energy Environ. Sci., 4, 1855 (2011)
  24. Kim YH, Prospectives of Industrial Chemistry, 8, 82 (2005)
  25. Meng LY, Park SJ, Carbon Lett., 13, 178 (2012)
  26. Im JS, Yun J, Kim JG, Bae TS, Lee YS, Appl. Surf. Sci., 258(7), 2219 (2012)
  27. OH SM, Electrochemistry, 1st ed., 1-26, Freeacademy, Korea.
  28. Cheng L, Dong SJ, J. Electrochem. Soc., 147(2), 606 (2000)
  29. Long GL, Winefordner JD, Anal. Chem., 55, 712 (1983)
  30. Bae TS, Shin E, Im JS, Kim JG, Lee YS, J. Non-Cryst. Solids, 358, 544 (2012)