화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.21, No.3, 133-137, March, 2011
Au와 탄소나노튜브 복합체 전극의 연성 향상
Enhanced Stretchability of Gold and Carbon Nanotube Composite Electrodes
E-mail:
Gold have been used as an electrode materials having a good mechanical flexibility as well as electrical conductivity, however the stretchability of the gold on a flexible substrate is poor because of its small elastic modulus. To overcome this mechanical inferiority, the reinforcing gold is necessary for the stretchable electronics. Among the reinforcing materials having a large elastic modulus, carbon nanotube (CNT) is the best candidate due to its good electrical conductivity and nanoscale diameter. Therefore, similarly to ferroconcrete technology, here we demonstrated gold electrodes mechanically reinforced by inserting fabrics of CNTs into their bodies. Flexibility and stretchability of the electrodes were determined for various densities of CNT fabrics. The roles of CNTs in resisting electrical disconnection of gold electrodes from the mechanical stress were confirmed using field emission scanning electron microscope and optical microscope. The best mechanical stability was achieved at a density of CNT fabrics manufactured by 1.5 ml spraying. The concept of the mechanical reinforced metal electrode by CNT is the first trial for the high stretchable conductive materials, and can be applied as electrodes materials in various flexible and stretchable electronic devices such as transistor, diode, sensor and solar cell and so on.
  1. Lungenschmied C, Dennler G, Neugebauer H, Sariciftci SN, Glatthaar M, Meyer T, Meyer A, Sol. Energy Mater. Sol. Cells, 91(5), 379 (2007)
  2. Wu WY, Zhong X, Wang W, Miao Q, Zhu JJ, Electrochem. Comm., 12(11), 1600 (2010)
  3. Gelinck GH, Huitema HEA, Van Veenendaal E, Cantatore E, Schrijnemakers L, Van der Putten JBPH, Geuns TCT, Beenhakkers M, Giesbers JB, Huisman BH, Meijer EJ, Benito EM, Touwslager FJ, Marsman AW, Van Rens BJE, De Leeuw DM, Nat. Mater., 3(2), 106 (2004)
  4. Jeon J, Lee TI, Choi JH, Kar JP, Choi WJ, Baik HK, Myoung JM, Electrochem. Solid State Lett., 14(2), H76 (2011)
  5. Huang H, Spaepen F, Acta Mater., 48, 3261 (2000)
  6. Ko Sh, Pan H, Grigoropoulos CP, Luscombe CK, Frechet JMJ, Poulikakos D, Nanotechnology, 18(34), 345202 (2007)
  7. Lacour SP, Wagner S, Huang Z, Suo Z, Appl. Phys. Lett., 82(15), 2404 (2003)
  8. Jeon J, Choi JH, Moon KJ, Lee TI, Moon H, Kim HY, Myoung JM, Korean J. Mater. Res., 20(2), 51 (2010)
  9. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH, Nature, 457, 706 (2009)
  10. De S, Lyons PE, Sorel S, Doherty EM, King PJ, Blau WJ, Nirmalraj PN, Boland J, Scardaci V, Joimel JJ, Coleman JN, ACS Nano, 3(3), 714 (2009)
  11. Ng SH, Wang J, Guo ZP, Wang GX, Liu HK, Electrochim. Acta, 51(1), 23 (2005)
  12. Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Johnson AT, Fischer JE, Appl. Phys. Lett., 80(15), 2767 (2002)
  13. Islam MF, Rojas E, Bergey DM, Johnson AT, Yodh AG, Nano Letters, 3(2), 269 (2003)
  14. Lim SC, Jang JH, Bae DJ, Han GH, Lee S, Yeo IS, Lee YH, Appl. Phys. Lett., 95(26), 264103 (2009)
  15. Li X, Chen WX, Zhao J, Xing W, Xu Z, Carbon, 43(10), 2168 (2005)
  16. Liu HS, Song CJ, Zhang L, Zhang JJ, Wang HJ, Wilkinson DP, J. Power Sources, 155(2), 95 (2006)
  17. Li XG, Hsing IM, Electrochim. Acta, 51(25), 5250 (2006)
  18. Ayyappan S, Gopalan RS, Subbanna GN, Rao CNR, J. Mater. Res., 12(2), 398 (1997)
  19. Tian ZQ, Jiang SP, Liang YM, Shen PK, J. Phys. Chem. B, 110(11), 5343 (2006)
  20. Holstein WL, Rosenfeld HD, J. Phys. Chem. B, 109(6), 2176 (2005)
  21. Zhao J, Chen WX, Zheng YF, Mater. Chem. Phys., 113(2-3), 591 (2009)
  22. Kim HK, Lee RY, Korean J. Mater. Res., 19(4), 192 (2009)
  23. Lordi V, Yao N, Wei J, Chem. Mater., 13, 733 (2001)
  24. Lin Y, Pan GB, Su GJ, Fang XH, Wan LJ, Bai CL, Langmuir, 19(24), 10000 (2003)
  25. Turkevich J, Kim G, Science, 169, 873 (1970)
  26. Viau G, Brayner R, Poul L, Charkroune N, Lacaze E, Fievet-Vincent F, Fievet F, Chem. Mater., 15, 486 (2003)
  27. Cullity BD, Elements of X-ray Diffraction, Addison Wesley (1978) (1978)
  28. Piela P, Eickes C, Brosha E, Garzon F, Zelenay P, J. Electrochem. Soc., 151(12), A2053 (2004)
  29. Gasteiger HA, Markovic N, Ross PN, Cairns EJ, J. Electrochem. Soc., 141(7), 1795 (1994)