화학공학소재연구정보센터
Polymer(Korea), Vol.39, No.1, 174-179, January, 2015
러빙한 유리 기판을 이용한 반응성 액정 배향
Alignments of Reactive Mesogen Using Rubbed Glass Substrates
E-mail:
초록
고분자 배향막이 없는 순수 유리 기판을 이용하여 광반응성 액정의 배향을 유도하였다. 유리 기판을 러빙하여 액정 배향을 유도한 경우, 고분자 배향막을 사용하여 유도한 경우와 같이 액정을 러빙 방향과 평행하게 배향할 수 있는 것을 편광 FTIR, 편광현미경, 복굴절 측정 등의 실험을 통해서 알 수 있었다. 순수 유리 기판을 러빙하여 액정 배향을 유도하는 메커니즘은 러빙 과정에서 유리 표면에 묻어나온 고분자들이 러빙 방향으로 늘어서 분자간 상호작용을 통하여 액정 분자들의 배향을 유도하는 것이다.
Alignments of photo-reactive mesogen were induced using bare glass substrates without a polymer alignment layer. It was found by using polarized FTIR spectroscopy, polarized microscopy, and birefringence measurement experiments that the reactive mesogen could be aligned along the rubbing direction although the glass substrate without an alignment layer was used. The induction mechanism of the rubbed bare glass is ascribed to that polymers from rubbing clothes are coated on the glass substrate along the rubbing direction and lead the alignment of liquid crystals through intermolecular interactions.
  1. Seo DS, Kobayashi S, Nishikawa M, Appl. Phys. Lett., 62, 2392 (1992)
  2. Ban BS, Kim YB, J. Am. Chem. Soc., 103, 3869 (1999)
  3. Lee ES, Vetter P, Miyahita T, Uchida T, Jpn. J. Appl. Phys., 32, 1339 (1993)
  4. Samant MG, Stohr J, Brown HR, Russell TP, Sands JM, Kumar SK, Macromolecules, 29(26), 8334 (1996)
  5. Lee SW, Lee SJ, Hahm SG, Lee TJ, Lee B, Chae B, Kim SB, Jung JC, Zin WC, Sohn BH, Ree M, Macromolecules, 38(10), 4331 (2005)
  6. Chae B, Lee SW, Lee B, Choi W, Kim SB, Jung YM, Jung JC, Lee KH, Ree M, J. Phys. Chem. B, 107(43), 11911 (2003)
  7. Ban BS, Rim YN, Kim YB, Liq. Cryst., 27, 125 (2000)
  8. Gibbons WM, Shannon PJ, Sun ST, Swetlin BJ, Nature, 351, 49 (1991)
  9. Ichimura K, Chem. Rev., 100(5), 1847 (2000)
  10. O’Neill M, Kelly SM, J. Phys. D: Appl. Phys., 33, 67 (2000)
  11. Obi M, Morino S, Ichimura K, Chem. Mater., 11, 656 (1996)
  12. Jackson PO, Oneill M, Duffy WL, Hindmarsh P, Kelly SM, Owen G, Chem. Mater., 13, 694 (2001)
  13. Chae B, Lee SW, Ree M, Jung YM, Kim SB, Langmuir, 19(3), 687 (2003)
  14. Lee SW, Kim SI, Lee B, Kim HC, Chang TY, Ree M, Langmuir, 19(24), 10381 (2003)
  15. Lee SW, Ree M, J. Polym. Sci. A: Polym. Chem., 42(6), 1322 (2004)
  16. Lee SW, Chang TY, Ree M, Macromol. Rapid Commun., 22(12), 941 (2001)
  17. Lee SW, Kim SI, Lee B, Choi WY, Chae B, Kim SB, Ree M, Macromolecules, 36(17), 6527 (2003)
  18. Hasegawa M, Jpn. J. Appl. Phys., 38, 457 (1999)
  19. Suna Z, Qina A, Chena Z, Wanga Y, Liq. Cryst., 37, 345 (2010)
  20. Fuh AYG, Liu CK, Cheng KT, Ting CL, Chen CC, Chao PCP, Hsu HK, Appl. Phys. Lett., 95, 161104 (2009)
  21. Coates D, Parri O, Verrall M, Slaney K, Marden S, Macromol. Symp., 154, 59 (2000)
  22. Wu LH, Luo S, Hsu CS, Wu ST, Jpn. J. Appl. Phys., 39, 5899 (2000)
  23. Li FM, Harris FW, Cheng SZ, Polymer, 37(23), 5321 (1996)
  24. Hoke CD, Mori H, Bos PJ, Jpn. J. Appl. Phys., 38, 642 (1999)
  25. Wu WY, Wang CC, Fuh AY, Opt. Express, 16, 17131 (2008)
  26. Yang YC, Yang DK, J. Opt. A: Pure Appl. Opt., 11, 105502 (2009)
  27. McCulloch I, Zhang W, Heeney M, Bailey C, Giles M, Graham D, Shkunov M, Sparrowe D, Tierney S, J. Mater. Chem., 13, 2436 (2003)
  28. Warta W, Stehle R, Karl N, Appl. Phys. A, 36, 163 (1985)
  29. Mirabella FM, J. Poym. Sci. Part B: Polym. Phys., 25, 591 (1986)
  30. Jung G, Lee M, Seo I, Song K, Polym.(Korea), 35(3), 272 (2011)
  31. Jung G, Seo I, Lee M, Choi SW, Song K, Polym.(Korea), 34(3), 242 (2010)
  32. Kissin YV, Rishina LA, Eur. Polym. J., 12, 757 (1988)
  33. Lee M, Shin MY, Kim SH, Song K, Polymer(Korea), 35, 493 (2001)
  34. Chandrasekhar S, Liquid Crystals, 2nd ed, Cambridge University Press, Cambridge (1992)
  35. Yeh P, Gu C, Optics of Liquid Crystal Displays, John Wiley & Sons, Canada (1999)
  36. Stohr J, Samant MG, J. Electron. Spectrosc. Relat. Phenom., 98-99, 189 (1999)
  37. Inoue Y, Kuramoto Y, Hattori M, Adachi M, Kimura M, Akahane T, J. Inf. Disp., 12, 125 (2011)