화학공학소재연구정보센터
Polymer(Korea), Vol.39, No.1, 136-143, January, 2015
초음파 수상 그래프팅을 이용하여 개질된 MWCNT가 첨가된 PVA 나노복합체의 전기적, 기계적 물성
Mechanical and Electrical Properties of PVA Nanocomposite Containing Sonochemically Modified MWCNT in Water
E-mail:
초록
초음파를 이용하여 poly(vinyl alcohol)(PVA)를 multiwalled carbon nanotube(MWCNT) 표면에 수상 그래프팅 하였고, 개질된 MWCNT를 이용하여 PVA와 나노복합체를 제조하였다. PVA로 개질된 MWCNT는 PVA 매트리스에 높은 친화성을 띠고, 우수한 분산성을 가지며, 그 복합체는 균일한 물성을 가지고 있었다. 이로 인하여 0.1 wt% 함량의 MWCNT 첨가시에 전기전도도의 percolation threshold이 관찰되었다. 개질한 MWCNT를 3.0 wt%로 사용한 복합체는 순수 PVA 대비 인장강도는 약 50%, 파단 연신율은 약 430%, 모듈러스는 약 100% 증가하였다. 또한 개질된 MWCNT는 PVA 매트리스에 핵제로 작용하여 5.0 wt% 첨가 시, 결정화온도를 8.5 oC 증가시키고 결정화도는 11.5% 증가하였다.
Poly(vinyl alcohol) (PVA) was grafted onto the multiwalled carbon nanotube (MWCNT) using ultrasound in water and modified MWCNT/PVA nanocomposite was prepared. Modified MWCNT had a good affinity with PVA matrix and showed improved dispersion state along with uniform properties. Therefore, the electrical percolation threshold was observed at 0.1 wt% MWCNT. 3.0 wt% modified MWCNT/PVA composite had 50% higher tensile strength, 430% higher elongation at break, and 100% greater modulus. Since the modified MWCNT acted as a nucleation agent, the crystallization temperature increased to 8.5 oC and the crystallinity increased to 11.5% at 5.0 wt% loading concentration.
  1. Breuer O, Sundararaj U, Polym. Compos., 25, 630 (2004)
  2. Choi J, Park EJ, Park DW, Shim SE, Synth. Met., 160, 2664 (2010)
  3. Deheer WA, Chatelain A, Ugarte D, Science, 270(5239), 1179 (1995)
  4. Chen QD, Dai LM, Gao M, Huang SM, Mau A, J. Phys. Chem. B, 105(3), 618 (2001)
  5. Park C, Ounaies Z, Watson KA, Crooks RE, Smith J, Lowther SE, Connell JW, Siochi EJ, Harrison JS, Clair TLS, Chem. Phys. Lett., 364(3-4), 303 (2002)
  6. Ma W, Liu L, Zhang Z, Yang R, Liu G, Zhang T, An X, Yi X, Ren Y, Niu Z, Li J, Dong H, Zhou W, Ajayan PM, Xie S, Compos. Sci. Technol., 66, 1162 (2006)
  7. Ajayan PM, Tour JM, Nature, 447, 1066 (2007)
  8. Chakraborty G, Meikap AK, Babu R, Blau WJ, Solid State Commun., 151, 754 (2011)
  9. Basiuk EV, Anis A, Bandyopadhyay S, Alvarez-Zauco E, Chan SLI, Basiuk VA, Superlattice Microst., 46, 379 (2009)
  10. Naebe M, Lin T, Straiger MP, Dai L, Wang X, Nanotechnology, 19, 305 (2008)
  11. Liu LQ, Barber AH, Nuriel S, Wagner HD, Adv. Funct. Mater., 15(6), 975 (2005)
  12. Paiva MC, Zhou B, Fernando KAS, Lin Y, Kennedy JM, Sun YP, Carbon, 42, 2849 (2004)
  13. Mi Y, Zhanga X, Zhou S, Cheng J, Liua F, Zhua H, Dong X, Jiao Z, Compos. Part A-Appl. Sci. Manuf., 38, 2041 (2007)
  14. Bai JB, Allaoui A, Compos. Part A-Appl. Sci. Manuf., 34, 689 (2003)
  15. Cebeci H, Villoria RGD, Hart AJ, Wardle BL, Compos. Sci. Technol., 69, 2649 (2009)
  16. Gorrasi G, Lieto RD, Patimo G, Pasquale SD, Sorrentino A, Polymer, 52, 1124 (2001)
  17. Oliva-Aviles AI, Aviles F, Sosa V, Carbon, 49, 2989 (2011)
  18. Moniruzzaman M, Winey KI, Macromolecules, 39(16), 5194 (2006)
  19. Zhang XT, Lu Z, Wen MT, Liang H, Zhang J, Liu ZF, J. Phys. Chem. B, 109(3), 1101 (2005)
  20. Kim Y, Baeck SH, Shim SE, Polym.(Korea), 38(3), 378 (2014)
  21. Cadek M, Coleman JN, Barron V, Hedicke K, Blau WJ, Appl. Phys. Lett., 81, 5123 (2002)
  22. Coleman JN, Cadek M, Blake R, Nicolosi V, Ryan KP, Belton C, Fonseca A, Nagy JB, Gun'ko YK, Blau WJ, Adv. Funct. Mater., 14(8), 791 (2004)
  23. Chen W, Tao XM, Xue P, Cheng XY, Appl. Surf. Sci., 252(5), 1404 (2005)
  24. Ryan KP, Cadek M, Nicolosi V, Walker S, Ruether M, Fonseca A, Nagy JB, Blau WJ, Coleman JN, Synth. Met., 156, 332 (2006)
  25. Bartholome C, Miaudet P, Derre A, Maugey M, Roubeau O, Zakri C, Poulin P, Compos. Sci. Technol., 68, 2568 (2008)