화학공학소재연구정보센터
Macromolecular Research, Vol.22, No.10, 1104-1108, October, 2014
Controlled oxidation level of reduced graphene oxides and its effect on thermoelectric properties
E-mail:
We investigated the thermoelectric properties of reduced graphene oxide (rGO) as a function of the oxidation level of rGO. rGO among graphene derivatives was selected as a thermoelectric material since rGO bucky paper shows low thermal conductivity due to the phonon scattering at the junctions of rGO nanoplatelets. The oxdation level of rGO was controlled by differing the amount of chemical reductant (hydrazine) used to reduce graphene oxide (GO) to rGO, which correspondingly affected the electrical conductivity and Seebeck coefficient of rGO film. In this study, the maximum of figure of merit (ZT) was found to reach to 1.1×10^(-4) at 298 K for rGO reduced with the hydrazine of 1000 μL. These results provide the first experimental evidence that the thermoelectric performance of graphene and its derivative can be controlled by the oxidation level of graphitic nanoplatelets.
  1. Sootsman JR, Chung DY, Kanatzidis MG, Angew. Chem. Int. Ed. Engl., 48, 8616 (2009)
  2. Majumdar A, Science, 303, 777 (2004)
  3. Bux SK, Fleurial JP, Kaner RB, Chem. Commun., 46, 8311 (2010)
  4. Winder EJ, Ellis AB, Lisensky GC, J. Chem. Educ., 73, 940 (1996)
  5. Ouyang Y, Guo J, Appl. Phys. Lett., 94, 263107 (2009)
  6. Hao L, Lee TK, Phys. Rev. B, 81, 165445 (2010)
  7. Xiao N, Dong X, Song L, Liu D, Tay Y, Wu S, Li LJ, Zhao Y, Yu T, Zhang H, Huang W, Hng HH, Ajayan PM, Yan Q, ACS Nano, 5, 2749 (2011)
  8. Seol JH, Jo I, Moore AL, Lindsay L, Aitken ZH, Pettes MT, Li XS, Yao Z, Huang R, Broido D, Mingo N, Ruoff RS, Shi L, Science, 328(5975), 213 (2010)
  9. Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD, Chem. Mater., 11, 771 (1999)
  10. Hummers WS, Offeman RE, J. Am. Chem. Soc., 80, 1339 (1958)
  11. Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, Stankovich S, Jung I, Field DA, Ventride Jr. CA, Ruoff RS, Carbon, 47, 145 (2009)
  12. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS, Carbon, 45, 1558 (2007)
  13. Bagri A, Mattevi C, Acik M, Chabal YJ, Chhowalla M, Shenoy VB, Nat. Chem., 2, 581 (2010)
  14. Snyder GJ, Toberer ES, Nat. Mater., 7(2), 105 (2008)
  15. Dubey N, Leclerc M, Polym. Phys., 49, 467 (2009)
  16. Park YW, Lee YS, Park C, Shacklette LW, Baughman RH, Solid State Commun., 63, 1063 (1987)
  17. Shinohara Y, Ohara K, Nakanishi H, Imai Y, Isoda Y, Mater. Sci. Forum, 492-493, 141 (2005)
  18. Li J, Tang X, Li H, Yan Y, Zhang Q, Synth. Met., 160, 1153 (2010)
  19. Hiroshige Y, Ookawa M, Toshima N, Synth. Met., 157, 467 (2007)
  20. Hu E, Kaynak A, Li Y, Synth. Met., 150, 139 (2005)
  21. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN, Nano Lett., 8, 902 (2008)
  22. Chasmar R, Stratton R, J. Electron. Control, 7, 52 (1959)
  23. Mahan GD, J. Appl. Phys., 65, 1578 (1989)
  24. Sofo JO, Mahan GD, Phys. Rev. B, 49, 4565 (1994)
  25. Shen Y, Zhou P, Sun QQ, Wan L, Li J, Chen LY, Zhang DW, Wang XB, Appl. Phys. Lett., 99, 141911 (2011)
  26. Mathkar A, Tozier D, Cox P, Ong P, Galande C, Balakrishnan K, Leela A, Reddy M, Ajayan PM, J. Phys. Chem. Lett., 3, 986 (2012)
  27. Yeh TF, Syu JM, Cheng C, Chang TH, Teng HS, Adv. Funct. Mater., 20(14), 2255 (2010)
  28. Ito J, Nakamura J, Natori A, J. Appl. Phys., 103, 113712 (2008)